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Novel expressions for time domain responses of 
fractance device
Rawid Banchuin1*

Abstract: In this research, many novel expressions for time domain responses 
of fractance device to various often cited inputs have been proposed. Unlike the 
previous ones, our expressions have been derived based on the Caputo fractional 
derivative by also concerning the dimensional consistency with the integer order 
device based responses and the different between two types of fractance device 
i.e. fractional order inductor and fractional order capacitor. These previous expres-
sions have been derived based on the Riemann-Liouvielle fractional derivative which 
has certain features that leads to contradictions and additional modeling difficul-
ties unlike the Caputo fractional derivative. Our new expressions are applicable 
to both fractional order inductor and capacitor with arbitrary order. They are also 
applicable to any subject which its electrical characteristic can be modeled based 
on the fractance device. With our expressions and numerical simulations, the time 
domain behavioral analysis of both fractance device and such subject can be di-
rectly performed without requiring any time to frequency domain conversion and its 
inverse as already presented in this work. Therefore our work has been found to be 
beneficial to various fractance device related disciplines e.g. biomedical engineering, 
control system, electronic circuit and electrical engineering etc.
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1. Introduction
Fractance device is an electronic device with fractional order impedance function i.e. such order can 
be any real value between −1 and 1. The fractance device which the phase of its voltage always 
leads that of its current thus has positive order, and vice versa are referred to as the fractional order 
inductor and fractional order capacitor respectively. This device is often cited in various scientific 
disciplines e.g. biomedical engineering (Barsoukov & Macdonald, 2005; Inaba, Manabe, Tsuji, & 
Iwamoto, 1995; Jesus, MacHado, & Cunha, 2008; Tang et al., 2009), control system (Charef, 2006; 
Jifeng & Yuankai, 2005; Vinagre & Feliu, 2007), electronic circuit and electrical engineering (Ahmad, 
El-khazali, & Elwakil, 2001; Dorčák, Terpák, Petráš, & Dorčáková, 2007; Freeborn, Maundy, & Elwakil, 
2013; Ma, Zhou, Li, & Chen, 2016; Schäfer & Krüger, 2006; Stanislavsky, 2005) etc. This is because it 
serves as a basis for the modeling of electrical properties of many subjects e.g. botanical tissues 
(Elwakil & Maundy, 2010; Inaba et al., 1995; Jesus et al., 2008), human organ (Tang et al., 2009), 
supercapacitors (Freeborn et al., 2013), lossy magnetic core inductive coils (Schäfer & Krüger, 2006) 
and Li-ion battery which is applicable to the electric vehicle (Ma et al., 2016), etc. For thoroughly ana-
lyze the electrical characteristics of these subjects, obtaining the expressions of responses of fract-
ance device which is their modeling basis, is profitable as the precise analysis results can be obtained 
by using those expressions and numerical simulations. By doing so, much of cost and effort can be 
significantly reduced compared to the direct measurement of the subject under test excited by the 
predetermined inputs which is both costly and cumbersome.

By this motivation and many citations of the fractance device, the expressions of time domain 
responses of fractance device to various inputs have been derived in previous studies e.g. Krishna, 
Reddy, and Santa Kumari (2008), Elwakil (2010), Radwan and Elwakil (2012a) and Banchuin and 
Chaisricharoen (2015) etc., based on the Riemann-Liouvielle fractional derivative which has certain 
features e.g. nonzero derivative of a constant (Atangana & Secer, 2013), derivative with one or more 
singular points of an analytic function and complex valued derivative of a real valued function 
(Valério, Trujillo, Rivero, Machado, & Baleanu, 2013) etc. These features leads to contradictions and 
additional modeling difficulties e.g. nonzero derivative of a constant is contradict to the fact that a 
constant is unchanged with respected to any variable, derivative with singular points become no-
nanalytic i.e. neither mathematically meaningful nor explicitly evaluated, at such points therefore 
introduces additional modeling difficulties and complex valued derivative introduces additional 
complex valued function thus also increase the modeling difficulties etc. These previous expressions 
have also been derived without concerning the dimensional consistencies with the responses of the 
integer order device i.e. the ordinary inductor and capacitor. Some of them are also applicable only 
to fractance device with certain magnitudes and orders. Moreover, the aforementioned different 
between the fractional order capacitor and inductor has not been taken into account.

Hence, the novel expressions of time domain responses of fractance device excited by various 
renowned inputs e.g. impulse, step, ramp, parabolic, trigonometric and arbitrary periodic input etc., 
have been derived in this research by also considering the formerly ignored dimensional consistency 
and different between both types of fractance device i.e. the fractional order inductor and capacitor. 
Unlike Banchuin and Chaisricharoen (2015), Elwakil (2010), Krishna et al. (2008) and Radwan and 
Elwakil (2012a), the Caputo fractional derivative which does not have those stated above features, 
has been adopted as our basis. The derived expressions are applicable to the fractance device of 
both types with arbitrary order. They are also applicable to any subject that its electrical character-
istic can be modeled by using the fractance device such as those mentioned above where the ap-
plications to the supercapacitors, lossy magnetic core inductive coils and Lithium-ion battery have 
been demonstrated. By using our derived expressions and numerical simulations with MATHEMATICA, 
the time domain behavioral analysis of fractance device e.g. transient and asymptotic behavioral 
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analysis etc., which are as important as the frequency domain based analysis, can be directly per-
formed without requiring either Fourier or Laplace transformation based methodology as already 
shown in this work. Moreover, such direct time domain behavioral analysis of the supercapacitors, 
lossy magnetic core inductive coils and Lithium-ion battery have also been demonstrated. So, our 
work has been found to be beneficial to various fractance device related disciplines e.g. biomedical 
engineering, control system, electronic circuit and electrical engineering etc.

In Section 2, both Riemann-Liouvielle and Caputo fractional derivative will be introduced followed 
by a brief revision of the previous works in Section 3. Our basis Caputo fractional derivative based 
voltage-current relationship of fractance device which the aforesaid different between both types of 
fractance device and dimensional consistency have been included, will be presented in Section 4. 
Our proposed expressions and their applications to the aforesaid subject will be subsequently pre-
sented in Sections 5 and 6 where the time behavioral and performance analysis will also be shown. 
Finally, the conclusion will be drawn in Section 7.

2. The fractional derivative
The fractional derivative is the generalizing of the ordinary derivative by allowing the arbitrary frac-
tional value order. For arbitrary function f(t), its Riemann-Liouvielle fractional derivative of arbitrary 
fractional order, γ with respected to t can be given by Atangana and Secer (2013) and Valério et al. 
(2013):

 

where m − 1 < γ < m and m can be arbitrary integer. Moreover, Γ() denotes the gamma function 
which can be mathematically defined in term of arbitrary variable x as:

 

On the other hand, the Caputo fractional derivative which has been adopted in this research, can be 
given as follows (Atangana & Secer, 2013; Valério et al., 2013):

 

3. Revision of the related previous works
As aforementioned, the Riemann-Liouvielle fractional derivative based expressions of time domain 
responses of fractance device to many excitations have been previously derived. In Krishna et al. 
(2008), many expressions which are applicable only to a half order capacitor i.e. a fractance device 
with the order, α of −0.5, have been proposed. Beside such limit applicability, this work also has other 
disadvantages e.g. the response to a zero phase shift cosinusoidal input become nonanalytic at the 
origin as it has a singularity there since it goes to infinity which cannot be explicitly evaluated, etc.

Later, the expressions of response of fractance device excited by a zero phase shift sinusoidal in-
put have been derived in Elwakil (2010) and Radwan and Elwakil (2012a) where Elwakil (2010) is 
dedicated only to the unity magnitude fractional order capacitor. Even though both fractional order 
inductor and capacitor have been taken into account in Radwan and Elwakil (2012a), their aforesaid 
different relationships between phases of voltage and current has been ignored. This is because 
0 < α < 1 and −1 < α < 0 for the fractional order inductor and capacitor due to such different so, m 
must be respectively given by 1 and 0 for these devices for taking this issue into account. 
Unfortunately, m has been similarly given by 1 for both fractional order inductor and capacitor in this 
previous work. The expressions proposed in both (Elwakil, 2010; Radwan & Elwakil, 2012a) are in 
terms of the generalized trigonometric functions i.e. the generalized sine and cosine function which 
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can be respectively denoted by sinα() and cosα(). These functions can be given as follows (Elwakil, 
2010; Radwan & Elwakil, 2012a, 2012b):

 

 

Both cosα() and sinα() can introduce the modeling difficulty since they also become nonanalytic at 
the origin by having singularities there as they goes to infinity (Radwan & Elwakil, 2012a, 2012b). 
Since the expressions proposed in Elwakil (2010) and Radwan and Elwakil (2012a) have been derived 
by assuming that the excitation current has zero phase shift, they become inapplicable when the 
nonzero phase shift input is applied. Moreover, both (Elwakil, 2010; Radwan & Elwakil, 2012a) also 
neglect the dimensional consistency with the integer order device based responses. This is because 
they adopted the following voltage-current relationship.

 

where v(t) and i(t) stand for the voltage response and input current. Moreover, k = L and k = C for the 
fractional order inductor and capacitor. Since the dimension of dα/dtα which is adopted in those pre-
vious works is s-α (Gómez-Aguilar, Rosales-García, Bernal-Alvarado, Córdova-Fraga, & Guzmán-
Cabrera, 2012), that of v(t) obtained by using this voltage-current relationship is HAs-α and F−1Asα for 
the fractional order inductor and capacitor respectively. These dimensions are inconsistent those of 
v(t) of the ordinary inductor and capacitor given by HAs−1 and F−1As.

Recently, the expression of response to arbitrary periodic input has been proposed in Banchuin 
and Chaisricharoen (2015). Unfortunately, this previous expression is applicable only to the frac-
tional inductor and the dimensional consistency has also been ignored as (6) has also been adopted 
in this work. Moreover, such expression is also in term of sinα() and cosα().

4. The basis Caputo fractional derivative based voltage-current relationship of 
fractance device
For covering the dimensional consistency, the cosmic time, σ (Gómez-Aguilar et al., 2012; Podlubny, 
2002) which has the dimension of s, has been introduced. Therefore (6) become:

 

For simplicity, we let K = k/σ1−α thus we have

 

According to the above definition of k, K = L/σ1−α = Lα which stands for the inductivity (Schäfer & 
Krüger, 2006), for the fractional order inductor. On the other hand, K = 1/σ1−αC = 1/Cα where Cα stands 
for the pseudo capacitance (Freeborn et al., 2013), for the fractional order capacitor. Noted that the 
dimensions of Lα and Cα are H∙sα−1 (Freeborn et al., 2013) and F∙sα−1 (Schäfer & Krüger, 2006) respec-
tively. By using (8), the dimension of the obtained v(t) is HAs−1 and F−1As for the fractional order in-
ductor and capacitor which are consistent to those the integer device based v(t).

Since we use the Caputo fractional derivative for defining dα/dtα, we have:
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Finally, as m must be respectively given by 1 and 0 for taking the different between the fractional 
order inductor and capacitor into account, our basis Caputo fractional derivative based voltage-
current relationship of the fractance device can be obtained as follows:

5. The proposed novel expressions and time domain behavioral analysis of 
fractance device
By using (10), our novel expressions of fractance’s response to various often cited inputs can be de-
rived and the time domain behavioral analysis of fractance device can be instantly performed by 
using these expressions as will be presented in the following subsections where the impulse, step, 
ramp and parabolic function which are aperiodic, will be firstly considered followed by trigonometric 
and arbitrary periodic function.

5.1. The expressions for impulse, step, ramp and parabolic responses
The response to impulse function i.e. impulse response, has been interested as any system can be 
conveniently characterized in time domain by using its impulse response since it is the time domain 
version of the transfer function. In order to derived the expression for impulse response, we let i(t) = 
Iδ(t) where I and δ() are arbitrary real value and Dirac’s delta function. As a result, the expression of 
impulse response can be obtained as

Since Г(−α + 1) = −αГ(−α), (11) can be reduced to:

 

where K = Lα and K = 1/Cα if the fractance device under consideration is the fractional order inductor 
and capacitor respectively.

It can be seen that our expression of impulse response i.e. (12), is applicable to both fractional 
order inductor and capacitor with arbitrary α excited by impulse signal with arbitrary amplitude. If 
we assume that I = 1 A, Lα = 1 H∙sα−1 and Cα = 1 F∙sα−1, the impulse response of the fractional order 
inductor and capacitor with different │α│’s can be numerically simulated by using our expression as 
depicted in Figures 1 and 2 where it can be observed that such responses of the fractional order in-
ductor and capacitor are respectively increased and decreased with respected to t where the rates 
of change are initially fast but asymptotically slow. Figure 1 also shows that the fractional order in-
ductor with │α│approaches 0 gives the impulse response that behaves more like a negative impulse 
function. Therefore such response vanished faster and changes faster at initial but become slower 
at asymptotic as it is now very closed to its final value i.e. 0. On the other hand, Figure 2 shows that 
the the fractional order capacitor with│α│approaches 1 gives the impulse response that behaves 
more likely to a positive step function and can be asymptotically existed unlike that of device with 
│α│approaches 0 which behaves likely to a positive impulse therefore it is asymptotically vanished. 
From both figures, it can be seen that the fractance device of both types with │α│approaches 1 gives 
the impulse response that changes faster at initial but slower at asymptotic. Since the impulse re-
sponse is the time domain characterization of the device, it can be implied that the dynamic of the 
fractance device with │α│approaches 1 is fast at initial but get slower at asymptotic and vice versa 
for the device with │α│approaches 0.
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Since it can be seen from Figure 1 the impulse response of the fractional order inductor is asymp-
totically vanished, we obtain:

 

for the fractional order inductor excited by impulse function.

However, this is not the case for the fractional order capacitor which its impulse response can be 
asymptotically existed as can be seen from Figure 2. For this device, we have found that:

 

Thus it can be seen that the upper bound of limt→∞
[v(t)] of the fractional order capacitor which is 

given by C−1
�
I, is inversely proportional to Cα. Moreover, we can simulate limt→∞

[v(t)] of the frac-
tional order capacitor as depicted in Figure 3 which shows that limt→∞

[v(t)] approaches 0 and its 
upper bound which is given by 1 V in this scenario as we assume that I = 1 A and Cα = 1 F∙sα−1, as │α│ 
approaches 0 and 1 respectively.

(13)lim
t→∞

[v(t)] = 0

(14)0 < lim
t→∞

[v(t)] < C−1
𝛼
I

Figure 1. v(t) of fractional 
order inductor with Lα = 1 
H∙sα−1 excited by i(t) = δ(t) 
vs. t (red:│α│ = 0.15, green: 
│α│ = 0.35, blue: │α│ = 0.55, 
and magenta: │α│ = 0.75).

Figure 2. v(t) of fractional 
order capacitor with Cα = 1 
F∙sα−1 excited by i(t) = δ(t) 
vs. t (red:│α│ = 0.2, green: 
│α│ = 0.4, blue: │α│ = 0.6, and 
magenta: │α│ = 0.8).
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By using our expression, the rate of change i.e. dv(t)/dt, of the impulse response of fractance de-
vice can be found as:

 

which shows that:

 

Therefore it can be seen that the fractional order inductor with higher Lα and capacitor with lower Cα 
give the impulse response that progresses faster thus employs faster dynamic.

Finally, if the fractance device is excited by an impulse signal with arbitrary delay, td where td ≥ 0 
i.e. i(t) = Iδ(t − td), we have the following expression for the response to such delayed impulse

 

Now, the expressions of responses to the step, ramp and parabolic input will be derived. These non-
periodic functions which have been considered as they are the often cited test signals, can be gener-
ally given by

 

where u() stands for the unit step function and {r} = {0, 1, 2}. It can be seen that (18) represents a 
step, ramp and parabolic input if we let r be 0, 1 and 2 respectively. By using (10) and (18), the gen-
eral expression of the step, ramp and parabolic response can be given by:

 

Since Г(r + 1) = rГ(r), this general expression can be further simplified as:
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[v(t)] of 
fractional order capacitor with 
Cα = 1 F∙sα−1 excited by i(t) = δ(t) 
vs. │α│.
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By using our general expression i.e. (20), the expression for the response of the fractance device to a 
step, ramp and parabolic function can be determined by simply letting r be 0, 1 and 2. As an illustra-
tion, the expression for the step response can be obtained by letting r = 0 in the general expression 
as follows:

 

The step response is of particular interested because the causal DC stimulus which is often cited in 
electrical and electronic engineering can be mathematically modelled by using the step function. If 
we also assume that I = 1 A, Lα = 1 H∙sα−1 and Cα = 1 F∙sα−1, the step responses of the fractional order 
inductor and capacitor can be simulated by using (21) as respectively depicted in Figures 4 and 5 
which show that the step response of the fractional order inductor and that of the fractional order 
capacitor is a time decreasing and increasing function. Figure 4 also shows the fractional order in-
ductor with │α│approaches 0 and 1 gives that step response that behaves more closely to a step 
and an impulse function. On the other hand, Figure 5 shows that the fractional order capacitor give 
the step response that become more likely to a step and ramp function as│α│approaches 0 and 1. 
This confirms us that the fractance device with │α│approaches 0 behaves more likely to a resistor 
where the device with │α│approaches 1 behaves more like either an integer inductor if it is a frac-
tional order inductor or an integer capacitor if it is a fractional order capacitor. From Figure 4, it can 
be seen that the step response of the fractional order inductor is asymptotically existed only for 
some values of │α│. Therefore we have found that:

 

which means that the upper bound of limt→∞
[v(t)] of the fractional order inductor i.e. LαI, is directly 

proportional to Lα. For the fractional order capacitor on the other hand, it can be seen from Figure 5 
that its step response is asymptotically existed for all values of│α│. Thus we have:

 

which shows that the lower bound of limt→∞
[v(t)] of the fractional order capacitor i.e. C−1

�
I, is in-

versely proportional to Cα. As a final remark from Figures 4 and 5, it has been found that the fract-
ance device with │α│approaches 0 responses to the step input thus to the causal DC stimulus faster 
than that with│α│approaches 1.

(21)v(t) =
KI

Γ(1 − �)
t−�u(t)

(22)0 < lim
t→∞

[v(t)] < L
𝛼
I

(23)lim
t→∞

[v(t)] > C−1
𝛼
I

Figure 4. v(t) of fractional 
order inductor with Lα = 1 
H∙sα−1 excited by i(t) = u(t) 
vs. t (red:│α│ = 0.15, green: 
│α│ = 0.35, blue: │α│ = 0.55, 
and magenta: │α│ = 0.75).
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By also using (21), it has been found that dv(t)/dt of the step response when t > 0 can be given by 
the right hand side of (12). Therefore it can be seen from Figure 1 that the fractional order inductor 
with│α│approaches 1 gives the step response with faster rate of change especially during transient. 
On the other hand, the fractional order capacitor with │α│approaches 0 gives the step response 
with faster and slower rate of change at initial and asymptotic respectively as can be seen from 
Figure 2. It can also be seen from the right hand side of (12) that ||dv(t)∕dt|| � K for the step re-
sponse as well as the impulse response. Therefore the fractional order inductor with larger size gives 
the step response thus the DC response that progresses faster where the opposite relationship can 
be seen from the fractional order capacitor.

By using (22) and (23), limt→∞
[v(t)]’s of the fractional order inductor and capacitor excited by step 

input can be simulated by also assuming that I = 1 A, Lα = 1 H∙sα−1 and Cα = 1 F∙sα−1 as depicted in 
Figures 6 and 7. These figures shows that limt→∞

[v(t)] of the fractional order inductor which has 
LαI = 1 V under the assumed simulating condition, is a decreasing function of │α│. On the other 
hand, limt→∞

[v(t)] of the fractional order capacitor approaches C−1
�
I which is given by 1 V in this 

case, as │α│ approaches 0.

Figure 6. lim
t→∞

[v(t)] of 
fractional order inductor with 
Lα = 1 H∙sα−1 excited by i(t) = u(t) 
vs. │α│.

Figure 5. v(t) of fractional 
order capacitor with Cα = 1 
F∙sα−1 excited by i(t) = u(t) 
vs. t (red:│α│ = 0.2, green: 
│α│ = 0.4, blue: │α│ = 0.6, and 
magenta: │α│ = 0.8).
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Finally, if the fractance device is excited by a delayed excitation i.e. i(t) = I(t − td)ru(t − td) where r is 
given by 0, 1 and 2 if such excitation is a delayed step, ramp and parabolic input, td must be intro-
duced to (20). Therefore we have the following general expression for delayed response.

 

5.2. The expressions for trigonometric and arbitrary periodic responses
In order to derive the expressions for trigonometric responses, both sinusoidal and cosinusoidal 
function have been considered as these functions are the typical mathematical models of the AC 
stimulus. Instead of the zero phase sinusoidal and cosinusoidal input assumed in the previous works 
(Elwakil, 2010; Krishna et al., 2008; Radwan & Elwakil, 2012a), a sinusoidal and cosinusoidal excita-
tion with arbitrary magnitude, I and phase ϕ i.e.
 

 

have been chosen due to their generality.

For saving the computational effort, we firstly determine the expression for the fractance device’s 
response to i(t) = I exp [j(ωt + φ)] then taking the real part and imaginary part of the result in order 
to obtain our desired expressions. This methodology can give our desired expressions because-
exp [j(ωt + φ)] = cos (ωt + φ) + j sin (ωt + φ). By using this methodology instead of them separately, 
the expressions of both sinusoidal and cosinusoidal responses can be simultaneously obtained with-
in a single fractional differentiation thus saving the computational effort. With i(t) = I exp [j(ωt + φ)], 
the following fractance device’s response which is complex valued as the excitation is, can be ob-
tained by using (10).

(24)v(t) =
KIΓ(r + 1)

Γ(r − � + 1)
(t − td)

r−�u(t − td)

(25)i(t) = I sin(�t + �)

(26)i(t) = I cos(�t + �)

Figure 7. lim
t→∞

[v(t)]of 
fractional order capacitor with 
Cα = 1 F∙sα−1 excited by i(t) = u(t) 
vs. │α│.
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Therefore the expressions of the cosinusoidal and sinusoidal response, can be obtained by taking the 
real and imaginary part of (27) as follows:

(27)
v(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I�t1−�

C
�
Γ(2 − �)

; fractional order capacitor

×

��
(1 − �) cos(�)

�t 1
F
2
(1; 0.5 − 0.5�, 1 − 0.5�; − 0.25(�t)2)

−sin(�)
1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

�

+ j
�
cos(�)

1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

+
(1 − �) sin(�)

�t 1
F
2
(1; 0.5 − 0.5�, 1 − 0.5�; − 0.25(�t)2)

��

I�L
�
t1−�

Γ(2 − �)
; fractional order inductor

×

��
�t cos(�)

� − 2 1
F
2
(1; 1.5 − 0.5�, 2 − 0.5�; − 0.25(�t)2)

− sin(�)
1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

�

+ j
�
cos(�)

1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

+
�t sin(�)

� − 2 1
F
2
(1; 1.5 − 0.5�, 2 − 0.5�; − 0.25(�t)2)

��

(28)v(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I�t
1−�

C
�
Γ(2 − �)

; fractional order capacitor

×

�
(1 − �) cos(�)

�t 1
F
2
(1; 0.5 − 0.5�, 1 − 0.5�; − 0.25(�t)2)

− sin(�)
1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

�

I�L
�
t
1−�

Γ(2 − �)
; fractional order inductor

×

�
�t cos(�)

� − 2 1
F
2
(1; 1.5 − 0.5�, 2 − 0.5�; − 0.25(�t)2)

− sin(�)
1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

�
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It should be mentioned here that:

 

 

 

where 1F2(a1; b1, b2; z) is a generalized hypergeometric function with p = 1 and q = 2 (Dwork, 1990). 
This function can be defined for arbitrary p and q as:

where (ai)n and (bj)n are Pochhammer symbols which can be respectively defined as:

 

 

Let {m} = {0, 1, 2, 3, …}. If φ = ± mπ rad, the expression of the cosinusoidal response can be simplified 
as 

and the expressions of the sinusoidal response can be reduced to:

 

(29)
v(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I�t
1−�

C
�
Γ(2 − �)

; fractional order capacitor

×
�
cos(�)

1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

+
(1 − �) sin(�)

�t 1
F
2
(1; 0.5 − 0.5�, 1 − 0.5�; − 0.25(�t)2)

�

I�L
�
t
1−�

Γ(2 − �)
; fractional order inductor

×
�
cos(�)

1
F
2
(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)

+
�t sin(�)

� − 2 1
F
2
(1; 1.5 − 0.5�, 2 − 0.5�; − 0.25(�t)2)

�

(30)

1F2(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2) = 1F2(a1; b1, b2; z)
|||a1=1,b1=1−0.5�,b2=1.5−0.5�,z=−0.25(�t)2

(31)

1F2(1; 0.5 − 0.5�, 1 − 0.5�; − 0.25(�t)2) = 1F2(a1; b1, b2; z)
|||a1=1,b1=0.5−0.5�,b2=1−0.5�,z=−0.25(�t)2

(32)

1F2(1; 1.5 − 0.5�, 2 − 0.5�; − 0.25(�t)2) = 1F2(a1; b1, b2; z)
|||a1=1,b1=1.5−0.5�,b2=2−0.5�,z=−0.25(�t)2

(33)pFq(a1, a2,… ap; b1, b2,… bq; z) =

∞�
n=0

⎡
⎢⎢⎢⎢⎣

p∏
i=1

(ai)n

q∏
j=1

(bj)n

zn

n!

⎤⎥⎥⎥⎥⎦

(34)(ai)n = (ai)(ai + 1)(ai + n − 1) =
Γ(ai + n)

Γ(ai)

(35)(bj)n = (bj)(bj + 1)(bj + n − 1) =
Γ(bj + n)

Γ(bj)

(36)

v(t) =
I�t1−�

Γ(2 − �)

{
(1−�)

�C
�
t 1
F2(1; 0.5 − 0.5�, 1 − 0.5�; − 0.25(�t)2); fractional order capacitor

�L
�
t

�−2 1
F2(1; 1.5 − 0.5�, 2 − 0.5�; − 0.25(�t)2); fractional order inductor

(37)
v(t) =

KI�t1−�

Γ(2 − �) 1
F2(1; 1 − 0.5�, 1.5 − 0.5�; − 0.25(�t)2)
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It should be reminded here that K = Lα and K = 1/Cα for the fractional order inductor and capacitor.

At this point, it can be seen that our expressions for the trigonometric responses i.e. (28), (29), (36) 
and (37), are in terms of the generalized hypergeometric functions with p < q thus they are analytic 
everywhere (Willis, 2012), unlike cosα() and sinα(). If we let I = 1 A, ω = 200π rad∙s−1 and ϕ = 0.25π rad, 
the cosinusoidal and sinusoidal response of the fractional order capacitor and inductor due can be 
numerically simulated by using our expressions under the assumption that Cα = 1 F∙sα−1 and Lα = 1 
H∙sα−1 as depicted in Figures 8–11 which display none of any singular point. They also show that the 
magnitudes of the responses of the fractional order capacitor have been much attenuated from that 
of the excitation where those of the fractional order inductors have been much amplified. This sug-
gests us that the fractional order capacitor and inductor should be applied for the attenuation and 
amplification of the AC signal. Moreover, the fractional order inductor with │α│ approaches 1 gives 
larger │v(t)│ where the opposite relationship can be obtained from the fractional order capacitor.

These figures also show that both sinusoidal and cosinusoidal response of the fractance device 
are asymptotically converged to the usual sinusoidal and cosinusoidal function which confirms us 
that the fractance device is linear time invariant. Since the magnitude and phase of the fractance 
device’s impedance function can be respectively given by Kωα and απ/2, we have the following ex-
pressions for the asymptotic cosinusoidal and sinusoidal response:

 

 

Since ω ≥ 0, it can be seen from (38) and (39) that the magnitudes of these asymptotic responses are 
increased with respected to α and K. On the other hand, the amount of phase shifting from the input 
is increased with respected to │α│. As the asymptotic responses can be now determined, the tran-
sient responses of the fractace device i.e. vtrans(t), due to both cosinusoidal and sinusoidal input can 
be obtained by using the following equation.

 

(38)vasympt(t) = KI�
� cos(�t + � +

��

2
)

(39)vasympt(t) = KI�
� sin(�t + � +

��

2
)

(40)vtrans(t) = v(t) − vasympt(t)

Figure 8. v(t) of a fractional 
order capacitor with 
Cα = 1 F∙sα−1 excited by 
i(t) = cos (200πt + 0.25π) 
vs. t (red:│α│ = 0.4, green: 
│α│ = 0.5, and blue: │α│ = 0.6).
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and can be simulated for both fractional order capacitor and inductor by using our expressions 
under the assumption that I = 1 A, ω = 200π rad∙s−1 and ϕ = 0.25π rad as shown in Figures 12–15.

Figure 9. v(t) of a fractional 
order inductor with 
Lα = 1 H∙sα−1 excited by 
i(t) = cos(200πt + 0.25π) 
vs. t (red:│α│ = 0.4, green: 
│α│ = 0.5, and blue: │α│ = 0.6).

Figure 10. v(t) of a fractional 
order capacitor with 
Cα = 1 F∙sα−1 excited by 
i(t) = sin(200πt + 0.25π) 
vs. t (red:│α│ = 0.4, green: 
│α│ = 0.5, and blue: │α│ = 0.6).

Figure 11. v(t) of a 
fractional order inductor 
with Lα = 1 H∙sα−1 excited by 
i(t) = sin(200πt + 0.25π) 
vs. t (red:│α│ = 0.4, green: 
│α│ = 0.5, and blue: │α│ = 0.6).
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Figure 12. vtrans(t) of 
fractional order capacitor 
with Cα = 1 F∙sα−1 excited by 
i(t) = cos(200πt + 0.25π) 
vs. t (red:│α│ = 0.25, green: 
│α│ = 0.45, blue:│α│ = 0.65, 
and magenta:│α│ = 0.85).

Figure 13. vtrans(t) of 
fractional order inductor 
with Lα = 1 H∙sα−1 excited by 
i(t) = cos(200πt + 0.25π) 
vs. t (red:│α│ = 0.15, 
green:│α│ = 0.35, 
blue:│α│ = 0.55, and 
magenta:│α│ = 0.75).

Figure 14. vtrans(t) of 
fractional order capacitor 
with Cα = 1 F∙sα−1 excited by 
i(t) = sin(200πt + 0.25π) vs. 
t (red:│α│ = 0.25, green: 
│α│ = 0.45, blue:│α│ = 0.65, 
and magenta:│α│ = 0.85).
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It can be seen from these figures that the transient cosinusoidal and sinusoidal responses of the 
fractional order capacitor and inductor which are of the same and opposite polarity, are asymptoti-
cally died out as expected and│vtrans(t)│of the fractional order capacitor as t approaches 0 is a de-
creasing function of │α│. On the other hand, the opposite relationships can be obtained from the 
fractional order inductor. Moreover, it can also be seen that the decaying rate of the transient re-
sponse of the fractional order capacitor and that of fractional order inductor are respectively de-
creasing and increasing function of │α│ where obviously low decaying rate can be observed for the 
fractional order capacitor with│α│approaches 1 and inductor with│α│ approaches 0. This can be 
quantitatively confirmed by considering tC which is an amount of time required for │vtrans(t)│being 
decayed to 36.8% of its initial value i.e.│vtrans(tC)│ is approximately 36.8% of │vtrans(t)│ as t approach-
es 0. By using the data obtained from Figures 12 and 13, tC for the cosinusoidal responses can be 
numerically determined for the fractional order capacitor and inductor as tabulated in Tables 1 and 
2. On the other hand, by using the data from Figures 14 and 15, tC for the sinusoidal responses can 
be numerically calculated for the fractional order capacitor and inductor as given in Tables 3 and 4.

From these tables, it can be seen that tC is respectively increased and decreased with respected 
to│α│for the fractional order capacitor and inductor where obviously high tC can be obtained for the 
fractional order capacitor with │α│approaches 1 and inductor with │α│ approaches 0. Since tC is 
inversely proportional to the decaying rate due to its definition mentioned above, the numerically 
obtained relationships between tC and│α│confirms the graphically obtained relationships between 
decaying rates and│α│. From these relationships, it can be summarized that the fractional order 
capacitor with│α│approaches 0 gives the the AC response that enters its steady state faster than 
that obtained from the device with│α│approaches 1 and the opposite relationship can be seen from 
the fractional order inductor.

Before we proceed to the subsequent section, it should be mentioned here that our expression for 
the sinusoidal response can be extensively used for deriving the expression for arbitrary periodic re-
sponse. In order to do so, the Fourier’s theorem must be applied. According to such theorem, an ar-
bitrary periodic input with period T, it can be alternatively given as a series of sinusoidal function as

Table 1. tC of the fractional order capacitor with Cα = 1 F∙sα−1 excited by i(t) = cos(200πt + 0.25π)
│α│ tC

0.25 0.03364 s

0.45 0.05203 s

0.65 0.13653 s

0.85 5.03712 s

Figure 15. vtrans(t) of 
fractional order inductor 
with Lα = 1 H∙sα−1 excited by 
i(t) = sin(200πt + 0.25π) 
vs. t (red:│α│ = 0.15, 
green:│α│ = 0.35, 
blue:│α│ = 0.55, and 
magenta:│α│ = 0.75).
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where ω = 1/T. Moreover, In and ϕn stand for the magnitude and phase of arbitrary nth sinusoidal 
term of the series. By using (41) and our expression for sinusoidal response, the expression for arbi-
trary periodic response can be obtained in terms of the everywhere analytic generalized hypergeo-
metric functions as follows:

 

where:

 

(41)i(t) =

∞∑
n=0

[In sin(n�t + �n)]

(42)v(t) =
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n=0

[vn(t)]

(43)

v
n
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�

Table 2. tC of the fractional order inductor with Lα = 1 H∙sα−1 excited by i(t) = cos(200πt + 0.25π)
│α│ tC

0.15 2.63726 s

0.35 0.07159 s

0.55 0.02669 s

0.75 0.01689 s

Table 3. tC of the fractional order capacitor with Cα = 1 F∙sα−1 excited by i(t) = sin(200πt + 0.25π)
│α│ tC

0.25 0.01689 s

0.45 0.02668 s

0.65 0.07162 s

0.85 2.55556 s

Table 4. tC of the fractional order inductor with Lα = 1 H∙sα−1 excited by i(t) = sin(200πt + 0.25π)
│α│ tC

0.15 4.73731 s

0.35 0.13640 s

0.55 0.05206 s

0.75 0.03348 s
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6. The applications to any subject that can be modelled with the fractance device
For the demonstrations, the applications of our expressions to the supercapacitors, lossy magnetic 
core inductive coils and Li-ion battery will be presented.

6.1. Supercapacitors
Since the supercapacitor behaves like a fractional order capacitor with resistive loss, it can be simply 
modeled as an internal resistance, R0 connects in series to a fractional order capacitor, Cα (Freeborn 
et al., 2013). Thus its voltage current relationship can be given by:

 

where V0 is the initial voltage of supercapacitor and −1 < α < 0 as the fractance device under consid-
eration is of the capacitive type.

Let the supercapacitor be charged by the galvanostatic charging methodology which the device is 
supplied by a causal DC input current. Since such input current is mathematically a step function i.e. 
i(t) = Iu(t), v(t) of the supercapacitor can be given by using our expression for step response with 
K = 1/Cα as the capacitive device has been considered as follows:

 

If three commercial 1.5 F rated supercapacitors i.e. Panasonic EEC-S5R115, Elna DB-R5RD155T and 
Cooper Bussman KR-R5RV155-R (Freeborn et al., 2013), are of interested, their v(t)’s due to a 0.5 A 
charging current can be simulated by using (45) with I = 0.5 A and their parameters (Freeborn et al., 
2013) shown in Table 5 under the assumption that V0 = 0 V, as depicted in Figure 16 where strong 
resemblances between our expression based v(t)’s to those experimentally collected step responses 
of various commercial supercapacitors (Freeborn et al., 2013) can be observed. It can also be seen 
that the charging rates of these supercapacitors are initially fast and become asymptotically slower 
where the Elna DB-R5RD155T employs the fastest charging rate followed by Panasonic EEC-S5R115 
and Cooper Bussman KR-R5RV155-R respectively.

From (45), it can be seen that:

 

which indicates that the charging rate of any supercapacitor is inversely proportional to Cα. Therefore 
Elna DB-R5RD155T and Cooper Bussman KR-R5RV155-R employ the fastest and slowest charging 
rate due to their minimum and maximum Cα.

As v(t) is now determined, the instantaneous power, p(t) delivered to the supercapacitor can be 
immediately obtained for t ≥ 0 as follows:

(44)v(t) = V0 + R0i(t) +
1

C
�

d� i(t)

dt�

(45)v(t) = V0 + I

(
R0 +

t−�

C
�
Γ(1 − �)

)
u(t)

(46)
dv(t)

dt
=

It−�−1

C
�
Γ(−�)

Table 5. Parameters of the 1.5 F rated supercapacitors (Freeborn et al., 2013)
Panasonic EEC-S5R115 Elna DB-R5RD155T Cooper Bussman KR-R5RV155-R
R0 = 5.87 Ω R0 = 8.68 Ω R0 = 6.68 Ω

Cα = 0.155 F∙sα−1 Cα = 0.114 F∙sα−1 Cα = 0.166 F∙sα−1

α = −0.54 α = −0.496 α = −0.537
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Since R0 is not an energy storage element, I2R0 is a power loss according to IR0 voltage loss. According 
to R0’s shown in Table 5, it can be seen that Elna DB-R5RD155T has maximum loss followed by 
Cooper Bussman KR-R5RV155-R and Panasonic EEC-S5R115 respectively.

When the supercapacitor is discharging on the other hand, there is no input current. Therefore it 
can be modelled as a source free resistor-fractional order capacitor circuit. As a result, v(t) can be 
now given by assuming that the supercapacitor is now connected to the resistive load, RL as follows:

 

where t > tS which the supercapacitor is switched from charging to discharging mode assuming that 
the charging has been started at t = 0, and E-α[ ] is a single parameter Mittag-Leffler function (Valério 
et al., 2013). By using (45) and keeping in mind that R0 is not an energy storage element, VS can be 
mathematically defined as:

 

If we let V0 = 0 V, I = 0.5 A, tS = 19 s, and RL = 1 Ω, the discharging voltages of our three candidate 
commercial 1.5 F rated supercapacitors can be simulated as depicted in Figure 17 where the hori-
zontal axis is t-tS. This figure reveals that the Panasonic EEC-S5R115 supply maximum discharging 
voltage at initial followed by Cooper Bussman KR-R5RV155-R and Elna DB-R5RD155T. However, it 
can be seen that Elna DB-R5RD155T gives maximum discharging voltage at asymptotic. This figure 
also shows that the discharging rate is initially fast and asymptotically slow where Panasonic EEC-
S5R115 employs the fastest rate followed by Cooper Bussman KR-R5RV155-R and Elna DB-R5RD155T. 
Since Elna DB-R5RD155T has a slowest discharging rate, it retains its initial voltage which is not sig-
nificantly lower than those of the other supercapacitors, for a maximum proportion. Therefore it 
supplies the maximum discharging voltage at asymptotic.

By using (48), it has been found that:

 

(47)p(t) = IV0 + I
2R0 +

I2t−�

C
�
Γ(1 − �)

(48)v(t) =
VSRL
R0 + RL

E
−�

[
−

t−�

(R0 + RL)C�

]

(49)VS = V0 +
It−�S

C
�
Γ(1 − �)

(50)
dv(t)

dt
=

VSRL
R0 + RL

t−1E
−�,0

[
−

t−�

(R0 + RL)C�

]

Figure 16. v(t)’s due to a 
0.5 A charging current of 
three commercial 1.5 F rated 
supercapacitor (red: Panasonic, 
green: Elna, and blue: Cooper 
Bussman).
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where E-α,0[ ] is a double parameters Mittag-Leffler function (Valério et al., 2013). It can be seen from 
(50) that the discharging rate inversely proportional to t thus it is initially high and become lower at 
asymptotic as observed. Moreover, (50) also shows that the discharging rate is an increasing func-
tion of│α│according to the property of the Mittag-Leffler function. Thus the Panasonic EEC-S5R115 
and Elna DB-R5RD155T employ the fastest and slowest discharging according to their maximum and 
minimum │α│ as can be seen from Table 5.

As it has been assumed that the supercapacitor is connected to RL, the voltage drop across RL is 
equal to the supercapacitor’s discharging voltage given by (48). Therefore the discharging current of 
the supercapacitor which flows through RL, can be obtained by using (48) as:

 

As a result, p(t) supplied by the supercapacitor can be now given by using (48) and (51) as follows:

 

From (48) and (52), it has been found that p(t) = v2(t)/RL. Therefore it can be deduced from Figure 17 
that Panasonic EEC-S5R115 supply maximum power at initial where Elna DB-R5RD155T gives maxi-
mum power at asymptotic.

6.2. Lossy magnetic core inductive coil
Since this subject behaves as a lossy fractional order inductor, it can be simply modeled as an ohmic 
resistance of the conductor, RCu connects to a fractional order inductor, Lα in a series fashioned 
(Schäfer & Krüger, 2006). Thus its voltage current relationship can be given by:

 

where 0 < α < 1 as the device under consideration is inductive. If the sinusoidal response of the coil 
is of interest, it can be given by using (53) as follows:

(51)i(t) =
VS

R0 + RL
E
−�

[
−

t−�

(R0 + RL)C�

]

(52)p(t) = RL

(
VS

R0 + RL
E
−�

[
−

t−�

(R0 + RL)C�

])2

(53)
v(t) = RCui(t) + L�

d� i(t)

dt�

Figure 17. v(t)’s at discharging 
states of three commercial 
1.5 F rated supercapacitor (red: 
Panasonic, green: Elna, and 
blue: Cooper Bussman).
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where:

 

It can be seen that vRCu (t) which is caused by RCu, is a usual sinusoidal function where vL
�

(t) which is 
caused by Lα, is a fractional order inductor sinusoidal response and can be obtained by using our 
expression.

For the lossy magnetic core inductive coil of the Ferrite core and soft-iron core type i.e. the Ferrite 
core and soft-iron core inductive coil along with the loudspeaker coil which is also a lossy magnetic 
core inductive coil, their v(t)’s, vRCu (t)’s and vL

�

(t)’s can be simulated by using (54)–(56) and their pa-
rameters (Schäfer & Krüger, 2006) shown in Table 6 under the assumption that I = 1 A, ω = 200π 
rad∙s−1 and ϕ = 0.25π rad as depicted in Figures 18–20 where it can be seen from Figure 18 that v(t) 
of Ferrite core inductive coil is almost similar to a normal sinusoidal function. This is because vRCu (t)
is the major part of v(t) and vL

�

(t) is almost identical to that of the ordinary inductor as │α│of this 
lossy inductive coil is very closed to 1.

From Figures 19 and 20, it can be seen that the soft-iron core inductive coil yields v(t) which is 
more similar to the fractional order inductor’s sinusoidal response than that of the loudspeaker coil 
even though │α│ of the loudspeaker coil is more closed to 1. This is because v(t) of the soft iron core 
inductive coil is dominated by its vL

�

(t)where that of the loudspeaker coil is dominated by its vRCu (t). 
The reason for this is that the soft iron core inductive coil has considerably large Lα compared to its 
RCu unlike the loudspeaker coil.

Moreover, it can be seen from Figures 18–20 that vL
�

(t) is asymptotically converged to a usual si-
nusoidal function. This is not surprising as vL

�

(t) is the fractional order inductor’s sinusoidal response. 
Therefore, we have:

 

which shows that the Ferrite core inductive coil yields the maximum amount of phase different be-
tween v(t) and i(t) and maximum degree of frequency dependent in amplitude followed by the soft-
iron core inductive coil and loudspeaker coil according to their α’s.

By subtracting vL
�
,asympt(t) from vL

�

(t), vL
�

(t) at transient i.e. vL
�
,trans(t), can be obtained and nu-

merically simulated for our lossy magnetic core inductive coils as depicted in Figures 21–23 where it 
can be seen that vL

�
,trans(t) is died out at asymptotic as expected. It can also be seen that vL

�
,trans(t) 

of the ferrite core inductive coil is very small thus it can be neglected in practice.

(54)v(t) = vRCu
(t) + vL

�

(t)

(55)vRcu
(t) = IRCu sin(�t + �)

(56)
v
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�
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1
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+
�t sin(�)
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(57)vL
�
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(
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)

Table 6. Parameters of the lossy magnetic core inductive coils (Schäfer & Krüger, 2006)
Ferrite core Soft-iron core Loudspeaker
RCu = 0.68 Ω RCu = 9.5 Ω RCu = 6.9 Ω

Lα = 0.62 mH∙sα−1 Lα = 919 mH∙sα−1 Lα = 25.3 mH∙sα−1

α = 0.99946 α = 0.712 α = 0.6206
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Figure 18. v(t) (blues), vLα(t) 
(red) and vRCu(t) (green) of the 
Ferrite core inductive coil due 
to i(t) = sin(200πt + 0.25π).

Figure 19. v(t) (blues), vLα(t) 
(red) and vRCu(t) (green) of the 
soft-iron core inductive coil due 
to i(t) = sin(200πt + 0.25π).

Figure 20. v(t) (blues), vLα(t) 
(red) and vRCu(t) (green) of 
the loudspeaker coil due to 
i(t) = sin(200πt + 0.25π).
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Moreover, it has been found by analyzing the data obtained from Figures 21–23 that the corre-
sponding tC of vL

�
,trans(t), is given by 0.04855, 0.06588 and 0.08608 s for the Ferrite core inductive 

coil, soft-iron core inductive coil and loudspeaker coil respectively. Therefore it can be implied that 
vL

�
,trans(t) of the Ferrite core inductive coil has the maximum decaying rate due to its minimum tC 

Figure 21. vLα, trans(t) of the 
Ferrite core inductive coil due 
to i(t) = sin(200πt + 0.25π).

Figure 22. vLα, trans(t) of the soft-
iron core inductive coil due to 
i(t) = sin(200πt + 0.25π).

Figure 23. vLα, trans(t) of the 
loudspeaker coil due to 
i(t) = sin(200πt + 0.25π).
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followed by that of the soft-iron core inductive coil and loudspeaker coil. This is because the Ferrite 
core inductive coil has maximum│α│followed by the soft-iron core inductive coil and loudspeaker 
coil. This outcome is agreed with our transient behavioral analysis of the fractional order inductor 
excited by sinusoidal input given in Section 6.1.

Finally, as vL
�

(t) is asymptotically converged to a usual sinusoidal function, so does v(t). By using 
(54), (55) and (57) we obtain:

 

6.3. Lithium-ion battery
According to (Ma et al., 2016), the behavioral modeling of Lithium-ion battery can be achieved by 
using the fractional order circuit as depicted in Figure 24 where Cα, Voc and vo(t) are respectively the 
fractional order capacitor with order α, the open circuit voltage and the battery terminal voltage 
respectively. Moreover, Rβ//Cβ denotes the parallel combination of resistor, Rβ and fractional order 
capacitor with order β, Cβ. Obviously, −1 < α < 0 and −1 < β < 0 in this scenario. From Figure 24, vo(t) 
can be related to i(t) by the following equation:

 

where vα(t) and vβ(t) denote the voltage dropped across Cα and that drop across Rβ//Cβ thus across Cβ.

Noted that vα(t) can be simply given by:

 

Moreover, by keeping in mind that 1

1±x
≈ 1 ∓ x, vβ(t) can found as:

 

Therefore we obtain the following relationship between vo(t) and i(t):
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Figure 24. The fractional order 
circuit based behavioral  
model of Lithium-ion battery  
(Ma et al., 2016).
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Apart from using the electrical impedance spectroscopy (EIS) method (Barsoukov & Macdonald, 
2005), Lithium-ion battery can be characterized by applying input with certainly known profile e.g. 
Economic Commission for Europe (ECE) 15 urban driving cycle which is used when the battery is ap-
plied in the electric vehicle (Ma et al., 2016) etc. Since such input is generally composed of many 
charging/discharging pulses (Ma et al., 2016), it can be mathematically given in terms of delayed 
step functions as:

 

where Ij, tj and tj+1 are the amplitude, beginning time and ending time of arbitrary jth pulse respec-
tively. Noted also that tj < tj+1.

After substituting (63) into (62) and applying our expressions of delayed impulse and step re-
sponse, the following vo(t) can be obtained:

 

Moreover, when tj < t < tj+1, the battery is subjected only to the jth pulse thus we have:

 

As a result, vo(t) for tj < t < tj+1 can be obtained by using our expression for step response as follows:

 

where vo(tj) is the initial value of vo(t) according to the previous adjacent pulse.

If we let the battery be subjected to 1.5 A pulse current with 500 s duration, vo(t) can be simulated 
by using (66) and the extracted parameters of Lithium-ion battery (Ma et al., 2016) as a redline de-
picted in Figure 25 which shows that the battery is charging. In the same figure, vo(t) due to a −1.5 A 
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Figure 25. vo(t) of the Lithium-
ion battery subjected to a 1.5 A 
pulse with 500 s duration (red) 
and a −1.5 A pulse with 500 s 
duration (blue) pulse current.
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pulse current of the same duration has also been simulated as a blue line where a discharging can 
be observed. Therefore it can be seen that the battery can be in either charging or discharging state 
depending on the polarity of Ij where the positive polarity yields charging and vice versa.

Moreover, the voltage drop across Cα i.e. vα(t), and vβ(t) when tj < t < tj+1 can be obtained by using 
(59) and (66) as:

 

 

where vα(tj) and vβ(tj) stand for the initial value of vα(t) and vβ(t) due to the previous adjacent pulse 
respectively.

By using (67) and (68), vα(t) and vβ(t) during the charging and discharging process can be simulated 
in the similar manners to vo(t) as depicted in Figures 26 and 27. These figures show that Cβ disrupts 
both charging and discharging process as vβ(t) < 0 and vβ(t) > 0 while charging and discharging which 
vo(t) must be respectively increased and decreased. Fortunately, the disruption is asymptotically 

(67)v
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Figure 26. vα(t) (red) and vβ(t) 
(blue) of the Lithium-ion 
battery subjected to a 1.5 A 
pulse with 500 s duration.

Figure 27. vα(t) (red) and vβ(t) 
(blue) of the Lithium-ion 
battery subjected to a −1.5 A 
pulse with 500 s duration.
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reduced as │vβ(t)│ is decreased. On the other hand, Cα augments both charging and discharging 
process because vα(t) > 0 and vα(t) < 0 while charging and discharging where the increasing and de-
creasing in vo(t) is respectively expected. Moreover, such augmentation is increased with time as 
│vα(t)│ is a time increasing function.

Finally, the instantaneous power, po(t) and energy, Eo(t) either supply to the charging battery or 
delivered by the discharging one when tj < t < tj+1 can be obtained by using (65) and (68) as given by 
(69) and (70) respectively. These equations show that po(t) is nonlinearly time dependent and Eo(t) is 
a fractional order function of time. If both Cα and Cβ become the ordinary capacitors, po(t) and Eo(t) 
will respectively be linear and quadratic as both α and β become −1. Thus it can be seen that the 
nonlinearity of po(t) and fractional order time dependency of Eo(t) are caused by the influences of Cα 
and Cβ.

7. Conclusion
In this work, novel expressions of time domain responses of fractance device excited by various re-
nowned inputs e.g. impulse, step, ramp, parabolic, trigonometric and arbitrary periodic input etc., 
have been derived based on the Caputo fractional derivative. The dimensional consistency to the 
responses of the integer order devices have also been taken into account. The derived expressions 
have been found to be applicable to both fractional order inductor and capacitor with arbitrary α. 
They are also applicable to any subject that can be modeled with the fractance device where the 
applications to the supercapacitors, lossy magnetic core inductive coils and the Lithium-ion battery 
have been demonstrated. By using our expressions and numerical simulations with MATHEMATICA, 
the time domain behaviors of the fractional order inductor, fractional order capacitor, supercapaci-
tors, lossy magnetic core inductive coils and the Lithium-ion battery have been thoroughly analyzed. 
So, this research has been found to be beneficial to those aforementioned fractance device related 
disciplines.
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