

AN ANALYSIS OF FIN-TECH APPLIED TO CHINA'S FINANCIAL INDUSETRY

ZHANG LAN

ID 5917190026

INDEPENDENT STUDY SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEDREE OF MASTER OF BUSINESS ADMINISTRATION, INTERNATIONAL PROGRAM, GRADUATE SCHOOL OF BUSINESS, SIAM UNIVERSITY, BANGKOK, THAILAND, 2018 Title: An Analysis of Fintech Applied to China's Financial Industry

Author: Zhang Lan

ID: 5917190026

Degree: Master of Business Administration

Major: International Business Management

This Independent Study Has Been Approved to be Partial Fulfillment of the Requirement for Master Degree of Business Administration in International Business Management at Graduate Business School of Siam University, Bangkok, Thailand.

Approved by Advisor:

(Associate Professor Dr. Jomphong Mongkhonvanit)

Date 22,06,2818

Dean:

(Associate Professor Dr. Jomphong Mongkhonvanit)

Date 22,00,2011

Abstract

Title: An Analysis of Fintech Applied to China's Financial Industry

Author: Zhang Lan

Degree: Master of Business Administration

Major: International Business Management

Approved by Advisor:

(Associate Professor Dr. Jomphong Mongkhonvanit)

Date 22, 06, 2018

In recent years, the concept of "Fintech" has rapidly emerged on a global scale. In practice, the specific meaning of "Fintech" is different under different backgrounds, and it is also related to and distinct from the concept of "internet finance". Overall, in China, Fintech has been applied to a number of financial areas, including payment and settlement, deposits and loans, capital raising, and investment management, and the most notable aspect is third-party payment which makes full use of modern QR code scanning technology and biometrics technology. The development and innovation of these financial sectors cannot be separated from the support of cloud computing, big data, block-chain and artificial intelligence technologies. Among them, distributed accounts (including block-chains) are considered to be the most promising technologies and most likely to have a significant impact on existing financial business models. From the perspective of the development history of the financial industry, although the application and popularization of new

the banking business model, financial legally relations, and the regulatory system, nor has it had a major impact on the stability of the financial system. It remains to be seen whether this financial technology will fundamentally change the existing business model and regulatory framework. Financial technology has a positive effect, also exists potential risks and regulatory challenges. The application of Fintech in the financial sector is a normal phenomenon in the revolution of the financial industry. Financial institutions and Fintech enterprises should actively apply new technologies to the transformation of the financial business.

Keywords: Fintech; 3rd party payment; cloud computing; big data; block-chain; AI.

÷

:

Acknowledgement

I would first like to thank my independent study advisor, Associate Professor Dr. Jomphong Mongkhonvanit, the Dean of Graduate Business School at Siam University. The door to Prof. Chen and Dean Office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right the direction whenever he thought I needed it.

I would also like to thank the respondents who were involved in the questionnaire survey for this analysis project. Without their passionate participation and input, the questionnaire survey could not have been successfully conducted.

I would also like to acknowledge committee team of Siam University as the second reader of this Independent study, and I am gratefully indebted to their very valuable comments on this independent study.

Finally, I must express my very profound gratitude to my friends and all my course professor for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this independent study. This accomplishment would not have been possible without them. Thank you.

Contents

Chapter 1 Introduction 1
1.1 Background of the Study1
1.2 Statement of Problem7
1.3 Objective of the Study
1.4 Significance of the Study
1.5 Limitations of the Study
Chapter 2 Literature Review
2.1 Third-party Payment 11
2.1.1 Case Analysis: Aliay and Tenpay 18
2.1.2 Relevant Technologies Applied in Payment Sector
2.2 Cloud Computing
2.2.1 The Current Development of Cloud Computing
2.2.2 The Value of Cloud Computing in the Financial Sector
2.2.3 Cloud Computing Applied in China's Financial Industry
2.3 Big Data
2.3.1 The Application Value of Big Data in Finance
2.3.2 Characteristic of Financial Big Data
2.3.3 Subversive Changes in the Financial Industry Driven by Big Data

2.3.4 The Application Cases of Big Data in the Financial Field	. 35
2.4 Block Chain	37
2.4.1 Analysis of Block Chain Characteristics	38
2.4.2 The Status of China's Block Chain Development	41
2.4.3 The Financial Application Scenario Interpretation of Block Chain	42
2.4.4 Analysis on Application Cases of Block-chain in Financial Sector	44
2.5 Artificial Intelligence	. 45
2.5.1 What Does Artificial Intelligence Do	. 46
2.5.2 The Impacts Brought by AI	. 47
2.5.3 Application Scenario of Artificial Intelligence in Financial Field	. 50
2.5.4 Application Cases of AI Applied in Financial Field	. 52
Chapter 3 Methodology	. 54
3.1 Research Methods	. 54
3.2 Research Question	55
3.3 Research Design	56
3.4 Data Collection	. 57
Chapter 4 Facts and Findings	58
4.1 Financial Sectors are Likely Disrupted by Fintech	. 58
4.2 Traditional Financial Institutions are to be the Most Disruptive in Future	59

4.3 Benefits Brought by Fintech to Financial Industry
4.3.1 Customers: Severing Population Under-served
4.3.2 Product and Service: Experience First
4.3.3 Channel: Mobile is King
4.4 Challenges Faced by China's Fintech Development
4.4.1 Personal Information Security Issues
4.4.2 New Challenges to Supervision 64
4.5 Issues Faced by the Collaboration of Fintech Firms and Financial Institutions
Chapter 5 Recommendation and Conclusion
5.1 Responding to Changes: Coming Together for the Common Good
5.1.1 Strategies and Mindsets: Partnering to Innovate
5.1.2 Resource allocation: Focusing on Key Technologies
5.1.3 Action Plan: Multiple Solutions to Collaborate
5.3 Conclusion
References
Appendix

Chapter 1 Introduction

1.1 Background of the Study

Financial technology (Fintech) is the new technology and innovation that aims to compete with traditional financial methods in the delivery of financial services. Fintech is a new industry that uses technology to improve activities in finance ((Sanicola & Lenny, 2017). The use of smartphones for mobile banking, investing services and cryptocurrency are examples of technologies aiming to make financial services more accessible to the general public. Financial technology companies consist of both startups and established financial and technology companies trying to replace or enhance the usage of financial services provided by existing financial companies. Since the birth of the modern financial industry, every major technological revolution in the field of science and technology has been accompanied by the participation of the financial industry and technological change, in turn, has profoundly affected the business state of finance. Finance as a non-physical and completely digitized way of trading, the technological change will be more effective for its promotion (Konsbruck Robert Lee, n.d.). At present, Fintech is widely applied to payment clearing, contract of loan, wealth management, retail banking, insurance, and transaction and it will become the mainstream trend of the financial industry in the future. Cloud computing, big data, block-chain and artificial intelligence technologies are the mainstream technologies for the development of Fintech have also been actively applied in the financial field (Reuben Jackson, 2018), and their application scenarios have also continued with rich, making the efficiency of related financial services constantly improving.

Fintech as a both "new" and "old" term, it originated from the information technology revolution in the 1950s in the United States as an important subject was valued by the scientific and financial circles (Desai, 2015). But it really caught on since 2015 mainly because of the

simultaneous outbreak of many internet finance companies at that time, which had an intense impact on the market. As a result of the combination of financial services and information technology, the development of Fintech can be divided into three stages according to the time dimension, namely, Fintech 1.0, 2.0 and 3.0 (Douglas W. Arner, 2016). Combined with the timeline of science and technology development, each stage has its own unique features. After the financial phase 1.0, onestop financial technology services will greatly enhance the efficiency of financial institutions (Harland Clarke, 2010).

Fintech 1.0 (1950s-2013) is also known as traditional financial technology. The first stage of Fintech development was before 2013. Prior to this, although finance and technologies were closely integrated, their application was not as widespread as today. In the financial sector: After 2013, many Internet financial institutions started to explode, including online loan companies, tripartite payment companies, crowdfunding, portal financing, etc. 2013 was also widely recognized as the first year of internet finance. In science and technology field: technology revolutions such as mobile internet, big data and cloud computing which have profoundly influenced our lives are also in the ascendant.

The characteristics of Fintech 1.0 were represented by traditional IT software and hardware technology and characterized by the use of IT technology in traditional financial institutions. At this stage, leading technology does not lead to a big pioneering advantages, but it brought great convenience to life. As John Maynard Keynes (1920) noted that the residents of London could order all kinds of products as they might see fit, and reasonably expected the products to be able to advance delivery, any enterprise in the world adventured their wealth and natural resource by the same way without any extortion or trouble (P.5).

Fintech 2.0 is also known as Social Fintech, or socialized financial technology, roughly from 2013 to 2020. This phase is driven by three forces and can be explained by three words:

Socialize - During the period of Fintech1.0, although the technology was closely related to finance, it was more used by traditional financial institutions (Douglas W. Arner, Jànos Barberis, & Ross P. Buckley, 2017).Even though banks launched online banking, but high using frequency was not existed. With the advent of the mobile Internet, Fintech is being widely applied today, and one of the clearest manifestation is that there is no need to carry wallet when someone go out.

Financial - Around 2013, the forms of informal finance broke out at the same time, including P2P, financial management, crowdfunding, tripartite payment, consumer finance. The outbreak of informal finance also popularized a financial concept for the public. In addition, to the traditional bank's savings and loans, there are diversified investment and financing channels.

Technology - Here, in fact, a small-scale innovation taking place in the technology field, social progress is driven by three technology forces, simultaneously: MT (mobile technology), CT (cloud technology), DT (data technology) (Kathryn Moyle, 2010).With the explosion of mobile Internet finance, mobile phones have become another organ of the human body, making it possible to obtain full data of big data and make loans without face to face can be realized. Cloud computing greatly reduces the cost of enterprise founded. The elastic cloud computing¹ also greatly reduces the expenses required for peak hour traffic calculation and standing traffic calculation, and effectively expands the service capabilities of financial enterprises and upstream and downstream service enterprises, making the business an index Level growth is possible.

¹ Elastic Cloud Computing: in cloud computing, elasticity is defined as "the degree to which a system is able to adapt to workload changes by provisioning and de-provisioning resources in an autonomic manner, such that at each point in time the available resources match the current demand as closely as possible"

Fintech 3.0 is also known as Intelligent Fintech, or intelligent financial technology, at that time, a new wave between the tech industry and financial industry will be set off. Specifically, in terms of finance: With the reform of the state financial system and the improving financial supervision, the operation of the financial industry will be dominated by licenses. In terms of technology: 5G, IOT, AI, and block-chain will run rampant when the infrastructure is completed (Paul Schulte & Gavin Liu, 2017). 5G is the foundation of IOT and the block-chain, when 5G is mature, many of the things that now require a lot of synchronous transmission of data in real time can be realized and the perfection of IOT will greatly promote the efficiency of the whole supply chain. In supply chain finance, business flow, logistics, information flow and capital flow can be combined. As a new type of dis-intermediation technology, the block-chain will greatly change the way of operation of financial institutions as intermediaries (Alex Tapscott & Don Tapscott, 2017).

The development of Fintech in China can be traced back to the beginning of the 21st century, driven by the Internet and digital technologies, traditional financial institutions began to build their own IT systems. In 2004, Fintech stared to spill over into non-core financial services, and permeated into core financial services in 2007. In June 13, 2013, Alipay combined Celestial fund jointly launched the Yu Ebao, Yu Ebao is a kind of financial value-added service on Alipay platform, users can transfer balance from Alipay account to Yu Ebao, is recognized that is seen as a particular fund to buy financial products, to obtain a relatively high income, but also the fund in Yu Ebao is readily available for online shopping and Alipay transfer and so on. This simple Internet financial model is highly welcomed in China because of its more than 10 times higher rates compared with the Saving Bank interest rates. Yu Ebao has attracted more than 400 billion with more than 61 million users by March 15, 2014. The emergence of Alipay and Yu Ebao, marking the financial technology in China's financial sector is widely recognized.

Based on the market activity, China's Fintech development experienced six different periods.

Exploration period (2004-2008) - During this period, the emergence of the Internet and digital technology led to the acceleration of some basic financial services (Thomas, 2014). Driven by the demand of work efficiency, traditional financial institutions began to set up their own IT systems, which became the most primitive origin of China's Fintech. Third-party payment first emerged in 2004 meant that Fintech from the background support position, toward the front end (Jin Huang, 2017). In 2007, the first online loan platform PPdai.com was established, and e-commerce platforms and Banks tried to jointly issue a loan. This has become a landmark event in the history of China's Fintech and at this point, Fintech has truly penetrated into the core business of finance.

Market star-up period (2009-2012) - In 2009, the birth of bitcoin was the combination of finance and technology, which marked the development of financial science and technology into a new stage (Daniel Folkinshteyn, Mark Lennon & Tim Reilly, 2015). In May 2011, the People' Republic Bank of China (PBOC) issued the first payment license, which brought third-party payment into the regulatory system (Li Wen, 2009). In July, the first crowdfunding platform was launched in China. In May 2012, the PBOC initiated "the practice of encouraging and guiding private capital into the banking sector", marked the official opening of private banks, and the testing for QR code payment was successful at the same year. With this, China's Fintech has entered the stage of rapid development.

Fast development period (2013- 2015H1) - In June 2013, the launch of Yu Ebao brought great shock to traditional finance, and therefore various funds and insurance companies launched a large-scale Internet-based strategy. In 2014, 1633 new P2P platforms were set up throughout the year, reaching the peak over the years. Equity financing in the Internet finance industry has grown explosively, reaching rmb142bn, with year-on-year growth of 695.38%. In March 2015, the government work report re-mentioned the issue of "promoting the healthy development of Internet

finance. And the industrial and commercial bank of China issued the "E-ICBC" to launch the Internet transformation. During this period, the status of Fintech enterprises with experience and technological advantages has been promoted unprecedentedly.

Modest adjustment period (2015H2-2016) - The disadvantage of China's financial industry was that it focused on the financial business itself, but the development mode of Internet ecology made it difficult for independent professional institutions to survive. In view of these shortcomings, relevant policies and solutions have been proposed. In July 2015, the PBOC issued a guideline on promoting the healthy development of Internet finance. In December, with respect to the supervision method of third-party payment and online loans were introduced successively.

Redevelopment period (2017-) - In July 2017, the PBOC established the institute of digital currency. It is a research institution specialized in the technology and application of digital currency by the PBOC and its research areas include digital currency, financial technology etc. That means PBOC became the first central bank to issue digital currency and carry out real applications worldwide.

The top 100 global Fintech released by Klynveld Peat Marwick Goerdeler (KPMG) indicated that among the top 10 companies, five Chinese companies account for half of the total. In particular, the top 3 companies were all Chinese companies (2017). Among them, Ant Financial has become a typical representative of global financial technology companies relying on its outstanding technical advantages and financial sales service model. Zhong an Insurance ranked second with a superior insurance technical ecosystem and high-speed business development. Qudian relied on massive online lending business, ranking third on the list. The above three companies reflect the leading development trend of China's Fintech industry in the world. For Chinese Fintech companies, the technical field that they provide support for the financial industry can be divided into five categories: cloud computing, big data, block chain, artificial intelligence and biometric identification technology. Financial technology enterprises can be divided into five

categories according to the specific areas that it provides to support for the financial industry: customer service, risk control, marketing, investment and payment, etc. China's Fintech focuses on the field of payments, cloud computing, dig data, block-chain and AI technologies. China is the world leader in Fintech. In some financial technology sectors, such as digital payments, China ranks forefront of the world. In the area of payment, enterprises are mainly based on big data and artificial intelligence technology, by applying intelligent recognition technology such as face recognition and fingerprint recognition to the playing field to realize innovative development of payment technology. The following analysis of Chapter 2 is based on the current status and major achievements of above areas.

1.2 Statement of Problem

However, the disruption from the technology revolution has changed competition logic and patterns in many industries, resulted in intense price war and loss of market share and customers. "Winner-take –all" mind-set is becoming a trend increasingly in innovative Fintech firms and financial enterprises (PricewaterhouseCoopers [PwC], 2017). For some special financial sector, such as payment sector, the above phenomenon is particularly evident. A market research report pointed out that Ant financial accounted 51% market share in China's Fintech applied field (Mancy Sun, Piyush Mubayi, Tian Lu & Stanley Tian, 2017) , and Alipay as one of the branches of Ant financial, accounted for more than a quarter of Ant's total revenue which can be regarded as main dominator of China's mobile payment area. Conversely, those small tech enterprises and financial institutions are unable to undertake fierce competition, resulted in loss of customers and market share. Another problem are deficient regulators and regulations focusing on Fintech applied to the financial industry, many illegal fund-raising activities have been packaged as financial innovation releasing to the public. The Global Fintech Survey China Summary (2017) released by PwC noted that new business model (crowdfunding, P2P lending), data storage, privacy and protection, and AML (anti-money laundering/KYC (Know Your Customer) were supposed to main obstacles to

Fintech and finance innovation. Moreover, problems such as disclosure of personal information is also rising during the application of Fintech technologies, which seriously threatens the privacy security of consumers.

In response to the above problems, this paper proposes several measures to mitigate some or all of the problems noted above. For those participants of Fintech applied, encourage them exploit new areas of Fintech (artificial intelligence, and block chain). National encourages innovative development policies can stimulate the development of small tech business in this area. Also perfect regulatory platforms and control regulations should be taken to prevent illegal financial activities.

1.3 Objective of the Study

To help readers fully understand the development and application of Fintech in China, in the following analysis, a questionnaire survey will be conducted on the application of Fintech applied in the financial industry. The questionnaire survey aims to make more respondents understand what Fintech is as well as the basic content of Fintech. And in the course of the development of Fintech, what opportunities and challenges will be presented to Chinese financial companies and financial institutions, and how financial institutions respond to the challenges arising from Fintech development. In this article, Excel and chart data analysis would be served as a main analytical process in this paper.

The objectives of this paper is also trying to clearly identify the main segments of Fintech industry, and find out how technologies-related applied in the financial industry in China, how it works, simultaneously. Moreover, to discover the relationship between Fintech and financial service is essential. Finally, summarizing the current status and put forward relevant suggestions to solve problems.

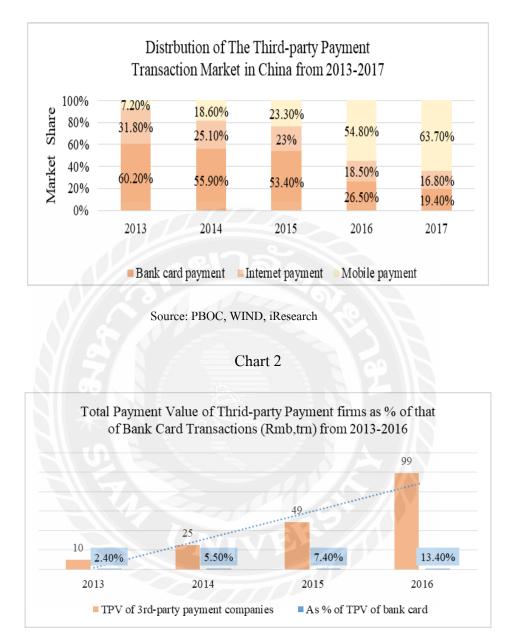
1.4 Significance of the Study

The financial services sector has been going through a transitional period as it adapts to new consumer trends that demand more accessibility and streamlined transactions. Today, consumers expect to be able to pay bills, get loans, receive financial advice, and manage their money themselves online, primarily through SaaS cloud solutions and applications. The significance of Fintech applied in financial industry emphasize the role of financial innovation, which can be considered a new means that involves the reduction of financial risk and costs or the instrument that meets the needs of financial innovation development. The purpose of this paper is to try to describe the current situation of Fintech applied in China's financial sectors based on different Fintech segments and explicate the impacts from Fintech applied to financial industry. In analyzing the current situations and problems, summarize and integrate the findings of the growing literature on Fintech-related to support further study of this paper. Also a goal of this paper is to help readers to more understand the Fintech development and how it affects financial sectors and what kinds of measures should be taken to prevent the risk from it.

1.5 Limitations of the Study

This study has several limitations in the analytical process. Firstly, the range of study only focus on China's Fintech development and application while some of the European countries and the United States have been in a relatively advanced stage and Fintech across emerging markets in ASEAN countries noted by Banco Bilbao Vizcaya Argentaria Research (BBVA) in 2017. Meanwhile, Fintech-related literatures are limited to written in Chinese and parts in English where there were centered on this area. Additionally, in this paper, the impacts of Fintech applied only focus on the financial industry. Moreover, the methodologies used in this study are qualitative research approach, questionnaire survey and relevant chart analysis. There is a possibility of invalid data during the survey, and in the chart analysis, some of the data comes from second-hand data.

The rest of the data are based on the existing secondary data, and there may be slight deviations from the actual data. However, the subjects of the questionnaire survey are almost limited to Chinese while others respondents are not familiar with the situation of Fintech applied in China, also, there is likely to receive invalid feedback during the questionnaire.



Chapter 2 Literature Review

2.1 Third-party Payment

Third-party payment (also call mobile payment) is based on the evolution of technologies such as internet technology, communication technology, biometric technology, and block chain (Eduardo Castelló Ferrer, 2017). China's third-party payment specifically refers to a third-party independent organization that has certain strength and credit guarantee. Generally, it provides a new payment model by means of cooperation with banks, providing transaction support tools and platforms, and realizing the transfer of funds. At present, the main medium for third-party payment is Internet-based payment and mobile-phone-based payment (Financial Action Task Force [FATF], 2013), as well as the relatively small volume of prepaid card payment and bank card business and the payment method is mainly based on scanning the QR code and NFC near-field payment, and biometric identification technology (face recognition, fingerprint identification, and iris recognition technologies.)

The Chart 1 below shows the distribution of China's third-party payment transaction market from 2013 to 2016 with an estimate for 2017, Chart 2 indicates total payment value (TPV) of third-party payment firms as percent of bank card transaction from 2013 to 2016. As of 2016, 54.8% of third-party payment transaction in China via mobile payment and total payment value (TPV) of third-party payment firms was 13.4% of that of bank card transactions.

Source: PBOC, WIND, Goldman Sachs Global Investment Research

Chart 3 shows that from 2010 to 2011, China's third-party payment market has grown at an annual rate of more than 50% and has become a global leader. In 2013, third-party transactions successfully exceeded the base of 17 trillion yuan, reaching 17.2 trillion yuan, an increase of 38.71% year-on-year. In 2014, with the rapid growth of both mobile payment and online payment, China's

third-party payment transaction volume reached 23.3 trillion yuan, however, the growth rate has continue to decline. The total value of third-party payment in 2016 was 57.9 trillion yuan, an increase of 85.6%. The scale of mobile payment transactions was 38.6 trillion yuan, which was about 50 times that of the United States.

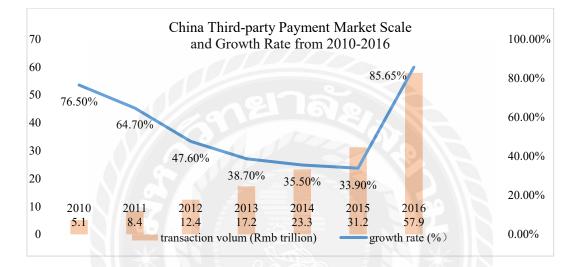
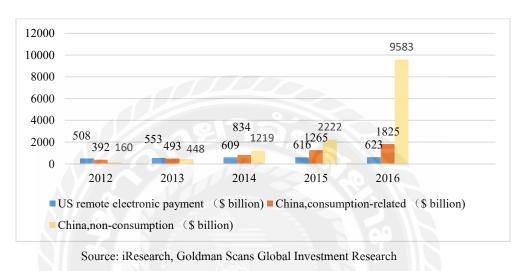


Chart 3


Source: Payment and Clearing Association of China

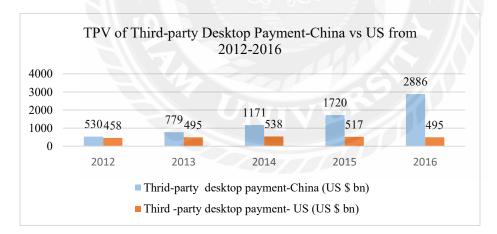
Mobile devices almost completely conquered the internet landscape in China. According to the China Internet Network Information Center (CNNIC) Data disclosure Statement, in 2016, 95.1% of Chinese Internet users access the Internet by using mobile devices.

In contrast, as the origin of Fintech, the development of US Fintech industry started relatively early, however, it has not really become a scale and mainly focus on a few scattered areas. 80% of e-commerce transactions in the United States today require payment through a computer terminal. At 2016, the amount of mobile payment in China has reached 70 times the size of the US counterpart, and consumption-related payments exceeded 8 times the size of American peers. China's third-party payment has expanded more than 74 times during the six years between 2010 and 2016. By 2016, the total payment value of third-party payment realized 11.4 trillion US dollars,

which third-party mobile payment accounted 75% of TPV, 16% came from consumer-related businesses and 56% from peer-to-peer (peer-to-peer) transfers.

Chart 4

Total Payment Value of Third-party Payment China vs US from 2012-2016

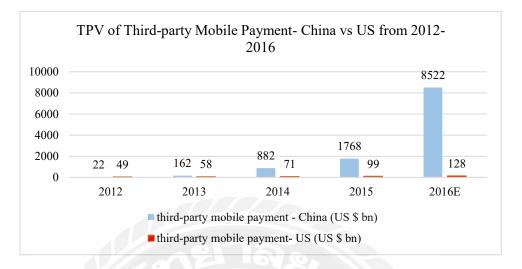


Source: iResearch, Nilson Report, Goldman Scans Global Investment Research

Note: no directly comparable data in the US, the remote payment data used from the Nilson Report

Third-party payment, especially third-party mobile payment, is one of the most prominent areas of China's Fintech. Results show on the Chart 4, the third party payment of third-party payment (via desktop and mobile payments) in China in 2016 to \$11.4 trillion, while in the United States was \$623 billion (in this article, the exchange rate USD/RMB = 6.9 flats in May, 2017). According to the results show on Chart 5, a great part of China payment value was P2P (C2C) transferred with fewer service charges, while the US \$ 623 billion payment value may be mostly commercial rather than C2C,. However, even if only look at the consumption-related transaction, the value still large, reaching a new high of \$155 billion in 2010 to \$1825 billion in 2016 in China.

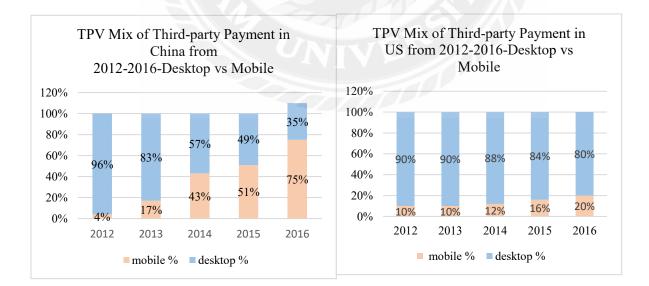
Chart 6 and Chart 7 shows the TPV of third-party payment through desktop and mobile of the US and China from 2012-2016. The speed and scale of China third-party payment (include third-party desktop payment and mobile payment) is faster than the US, especially third-party mobile payment and the popularity of it far exceeds the US.



Source: Nilson Report, ComScore State of the US Online Retail Economy

Note: 1: The desktop TVP of the US was estimated based on the desktop payment mix in e-commerce.

2: The TVP of China was actual number. The breakdown was estimated based on iResearch


Source: iResearch, Nilson Report, ComScore State of the US Online Retail Economy.

Note: 1: The mobile TVP of the US was estimated based on the mobile payment mix in e-commerce.

2: The TVP of China was actual number. The breakdown was estimated based on iResearch.

Chart 8

Chart 9

Source: iResearch

Source: ComScore State of the US Online Retail Economy

Chart 8 and Chart 9 shows the TPV mix of third-party mix (desktop & mobile) in China and the US from 2012-2016. As of 2016, third-party mobile payment accounted 75% of China total 3^{rd} party payment value while that of US just 20% of the total and the third-party desktop payment accounted 35% of total 3^{rd} party value while that of US was 80%.

US as a Fintech power, the above-mentioned situation in the US mobile payment industry was due to the strong bank card consumption habits and the complex market competitive environment, which hindered the effective development of US mobile payments from both demand and supply (Marianne Crowe, Marc Rysman, & Joanna Stavins, 2010). The inherent payment habits of consumers and merchants were hard to change. For the perfect payment system in the United States, consumers have also developed a strong credit card spending habit (Scott Schuh, Marianne Crowe & Joanna Stavins, 2006). Financial service companies have established strong market barriers in the personal payment sector through bank cards and personal cheque (Robert Weissbourd, 2002). At the same time, the market power of US mobile operators were not enough to promote the payment method based on NFC and other mobile technologies alone (Johannes Sang Un Chae, 2012), and initiated challenges to the traditional bank payment system. As a new form of payment, mobile payment is a difficult process for market penetration (Darin Contini, Marianne Crowe, Cynthia Merritt, Richard Oliver & Steve Mott, 2011).

In the United States, the mobile payment industry has not yet formed a dominant model (Jan Ondrus, Yves Pigneur, 2005). Operators, financial companies, merchants and third-party companies all wanted to control the mobile payment industry chain and share the development dividend of mobile payment (Coresight Research, 2016). In 2011, Google launched the Google Wallet offline NFC payment function in cooperation with Sprint. However, due to the lack of mobile devices and the blocking of rivals such as Verizon, Google Wallet has not been popularized since it was launched in two years, and the download volume was less than 30 million. In October

2012, Verizon, AT&T, and T-Mobile jointly developed their own Isis NFC payment to enter the NFC payment market and compete with Google Wallet.

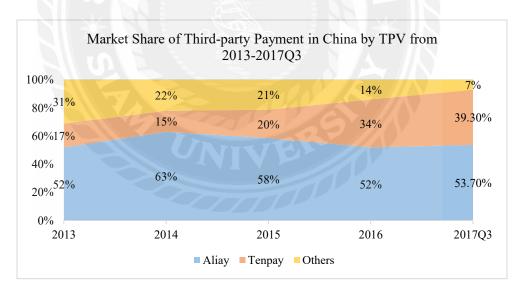
In addition, NFC mobile payment has faced other forms of payment competition. Based on the huge user base accumulated by the Internet, PayPal remains the leader in mobile payment in North America (Reinhardt Krause, 2017). Squar, which was founded in 2009, has risen rapidly, creating an annual turnover of \$6 billion in less than three years. In June 2012, retail terminals were also actively distributing mobile payments. MCX, a retailer alliance including Wal-Mart and Target, was deployed mobile payment business based on QR codes.

2.1.1 Case Analysis: Aliay and Tenpay

Chapter 1 has mentioned that in the China payment industry, "Winner- take- all" mind-set is becoming a trend among Fintech firms. The following analysis, two China payment giants will be taken as an example: Alipay and Tenpay.

Third-party payment firms	Market share
1 2	(%) 0.58%
Epro	0.38%
Union mobile pay	1.04%
Lianlianpay	1.04%
Ping an pay	1.26%
Baidu wallet	0.21%
99bill	0.51%
others	2.28%

Chart 10


Chart 11

Source: iResearch

Alipay is a branch of ant finance that operates a third-party online payment platform. Alipay is China's largest third-party payment platform, with 520Mn active users every year. According to

a survey of Chinese third party pay markets, data show on the Chart 10 indicated thatAlipay accounted for 53.73% of China Mobile's market share by the third quarter of 2017. In addition to providing payment processing and hosting services for the Alibaba ecosystem, Alipay's mobile payment application is also an important entry point for its users to access Ant's suits, Alibaba and other services provided by its business partners.

Tenpay is a third-party payment platform for Tencent, which provides technical infrastructure support for WeChat Pay and QQ wallet. On December 2016, its mobile payment function has more than 600 million months active users and 600 million daily payment transactions. Tenpay's third-party payment market share was 39.35 % in 2017Q3 according to the data show on Chart 11, second only to Alipay, while the remaining market share occupied by other competitors was only about 7%.

C1	10
Chart	12

Source: iResearch, Goldman Sachs Global Investment Research

Four years ago, Alipay firmly occupied the position of China's third-party payment market, however, in 2014, WeChat opened the door to mobile payment through a red packet. In the face of WeChat, which has nearly 1 billion users and a daily average use of 9 hours of uhf APP, Alipay began to struggle and its market share has declined since that, especially in mobile payment, as Tenpay entered the race, Chart 12 shows the changes of third-party market share from 2013-2017Q3.

2.1.2 Relevant Technologies Applied in Payment Sector

At present, the third-party payment market in China consists of scanning code payment and NFC (Near-Field Payment). Among them, Alipay and WeChat represent the camp of QR code payment. Unionpay and Apple pay represents the NFC payment camp. In the first quarter of 2017, the size of China's scanning code payment market exceeded 580 billion yuan, an increase of 606.8%, by the end of 2017, the payment of QR code was exceed 900 billion yuan market (iResearch, 2017).

As a wireless Communication technology, NFC is short for Near Field Communication. As early as 2006, with the promotion of Nokia, NFC technology has begun experimenting with mobile payment applications in China Yuetao Wu, Weizhou Zhou, 2014). Domestic operators have also begun to try NFC mobile payments. China Mobile has launched an "NFC-SIM card," which non NFC-enabled mobile phones also can implement NFC functionality. However, NFC's biggest development in recent years has undoubtedly come from Apple's support. In 2016, Apple Pay entered the Chinese market for the first time. The combination of NFC technology and Apple's mobile phone supported has enabled many Chinese users to truly experience the convenience of NFC (Tianyu M. Fang, 2018).

Biometrics is the use of computer operational capabilities and biostatistics methods to match the biometric samples to be identified with pre-stored human inherent biometric template to derive similarity value, and realize the purpose of identifying personal identification technology (Radhika V.Bhawani, 2009). It mainly includes fingerprint, face, vein, iris, voice pattern, palm print and other forms of biometric identification technology. Biometrics has been widely used in various fields of public security industry such as population information management, immigration control and criminal investigation (Anil K.Jain, Ajay Kumar, 2010). In recent years, biometrics technology has also been gradually applied to such areas as customer authentication, remote account opening, and withdrawal without card, face payment, Treasury management and network lending (Jeanne Lee, 2016). The biggest difference between biometric payment and traditional payment is that the biometric payment eliminates the hardware environment such as bank cards, mobile phones, and cash, and directly associates with the account through biometrics (Jyotsana Goyal, 2013). Scanning biometrics directly at the time of payment to match with the biometrics registered in the cloud, and complete the payment after confirming the identity.

In March 2015, executive chairman of Alibaba Group Jack Ma released and demonstrated the face recognition payment authentication technology at the opening ceremony of the CeBIT exhibition in Germany. At the end of the same year, Ant Financial "brush face" certification was officially launched at Alipay and China Merchants Bank. Ant Financial's "brush face" payment was awarded as the top 10 breakthrough Technology in the world by MIT Technology Review in 2017.

In the Alipay ecosystem, users who use face recognition technology to access Alipay account for more than 150 million and the accuracy of biological recognition is 99.9%. In addition, notable achievements have realized in cloud computing and block-chain. The global storage and distribution network of Alibaba hybrid cloud has more than 5,000 CDN nodes, delayed in more than 20 countries and covering six continents. The block chain technology applies to the Alipay treasure donation platform. In the area of artificial intelligence, the intelligent customer service ratio reaches 97.5%, the intelligent problem solving rate was 78%, which was higher than 75% of manual settlement rate and the manual intervention rate of return freight insurance is less than 10% (iReserch, 2017).

2.2 Cloud Computing

Cloud computing is an information technology (IT) paradigm that enables ubiquitous access to shared pools of configurable system resources and higher-level services that can be rapidly provisioned with minimal management effort, often over the Internet. Cloud computing relies on sharing of resources to achieve coherence and economies of scale, similar to a public utility. Cloud computing is a business implementation based on parallel processing, distributed computing and grid computing (Naidila Sadashiv, Dilip Kumar, 2011). The basic principle of its implementation is to divide the functions of computing into different computers so that computing can be completely separated from the local computer or server. In this way, the operation of the cloud computing is very similar to the Internet network, which enables the enterprise to automatically adjust the application according to the demand, and accessing the distributed storage system or computer required by the demand (Fred Waldner, 2010).

In the 20th century, Oracle and amazon came out with prototype products and services for cloud computing. However, cloud Computing was first introduced by Google CEO Eric Schmidt in 2006. Elastic Compute Cloud (EC2) service was introduced by Amazon and widely speeded since March 2006, which eventually became the name that defined the current wave of information technology revolution. After more than a decade of development, cloud computing has gradually moved from the conceptual phase to the practicing stage.

In 2016, 98% of the 29 million global IT workloads was completed through traditional IT and only 2% by the cloud computing (Cisco, 2016). However, by 2016, the global IT workload has increased to 160 million, of which the distribution ratio of traditional IT, public cloud¹, and private cloud² has reached 73%, 15%, and 12%. IT Workloads carried on the cloud has accounted for more

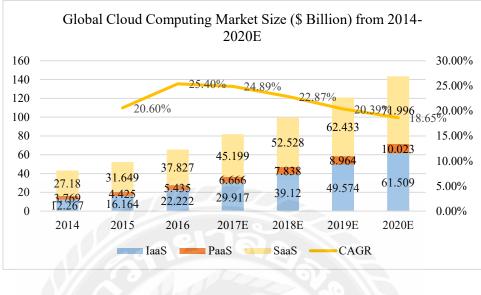
¹ Public cloud: Public cloud is the most common way to deploy cloud computing. Public cloud resources (such as servers and storage space) are owned and operated by third-party cloud service providers. These resources are provided through the Internet.

² Private cloud: Private cloud refers to the cloud computing resources used by an enterprise or organization.

than a quarter of the whole. Cloud services can reduce the IT construction and operating costs of innovative startups of Internet companies and help companies form a sustainable business model, thereby reducing operational risks (Michael Ewens, Ramana Nanda, Matthew Rhodes-Kropf, 2015). According to the statistical data disclosed in a Cloud Computing white book by Ministry of Industry and Information Technology of China (2016), about 2% of the top 500,000 websites in the world use services provided by public cloud service providers, of which 80% of them use Amazon and Rackspace cloud services. More than 90% of new Internet companies in the United States use cloud services.

2.2.1 The Current Development of Cloud Computing

The overall global cloud computing market continues to grow. The Chart 13 below shows the global cloud computing market scale from 2014-2017 with estimate data from 2017-2020. In 2016, the typical cloud service market represented by $IaaS^3$, $PaaS^4$, and $SaaS^5$ reached US\$65.48 billion, a CAGR⁶ of 25.4%, and is expected to reach US\$143.53 billion by 2020, with a compound annual growth rate of 21.7%.

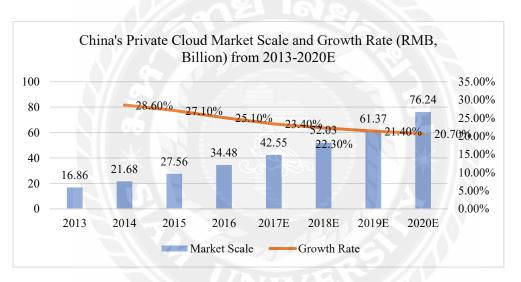


³ IaaS: IaaS refers to infrastructure as a service. Instead of buying hardware, the user rents out the cloud computing provider's infrastructure, deploys its own OS (operation system), and performs its own calculations. The users here are generally commercial organizations and not end consumers. The most famous provider of IaaS is Amazon's AWS ⁴ PaaS: PaaS refers to platform as a service. It is a service for software developers, and cloud computing platforms provide hardware, OS, programming languages, development libraries, and deployment tools to help software developers develop software services faster, such as Google's GAE.

⁵ SaaS: SaaS refers to software as a service. Instead of installing software, users can use software services, such as Google Docs, with a standard browser.

⁶ CAGR: CAGR means compound annual growth rate, refers to the annual growth rate of an investment in a given period.

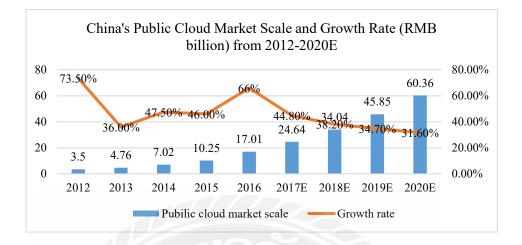
Chart 1	3
---------	---


Source: Gartner

Note: data from 2017-2020 is estimated based on previous market data and carry out fine tune.

The United States occupies a solid leadership position in the global cloud computing market (Luca Millefanti, 2016). As the "first mover" of cloud computing, North America still occupies a leading position in the market (Suresh Siva Ram Malladi, 2014). In 2016, the US cloud computing market accounted for 54.1% of the global market share, with a growth rate of 19.8%. It is expected to continue to grow at a rate of over 15% in the next few years. From the perspective of service providers, Amazon's AWS revenue reached USD 12.2 billion in 2016, a growth rate of over 54%, which data center located in the United States, Europe, Brazil, Singapore, Japan, and Australia, serving 190 countries and regions worldwide. Microsoft as an "attacker" of cloud computing, Azure cloud services growth rate during the same period increased by 93%, 1.7 times that of the AWS cloud services. At the same time, Microsoft's huge investment in cloud computing data centers has enabled Microsoft to have 38 data centers worldwide (CAICT, 2017).

-Development of China's cloud computing market.


China's cloud computing market generally maintains a high growth trend. The overall market size of cloud computing in China reached 514.9 billion yuan, and the overall growth rate was 35.9% in 2016, higher than the global average. Among them, the private cloud market was 34.48 billion yuan, with an annual growth rate of 25.1% (Chart 14). According to China Cloud Computing White Paper (2016), it was expected that the growth rate would still reach 23.4% in 2017, and the market size would reach about 42.5 billion RMB.

Source: China Academy of Information and Communication Technology.

In 2016, the overall scale of China's public cloud service market was approximately RMB 17.01 billion, a 66.0% increase from 2015 (Chart 15). It is expected that the public cloud market in China will maintain rapid growth from 2017 to 2020, and the market size will reach RMB 60.36 billion by 2020 based on the market valuation forecast 2016.

Source: China Academy of Information and Communication Technology.

The IaaS (hardware market) was still dominant in China's private cloud market (Leigh Ann Ragland, Joseph McReynolds, Matthew Southerland &James Mulvenon, 2013). Results show on the Chart 16 indicate that the hardware market in the private cloud market was RMB 24.72 billion, accounting for 71.7%, the SaaS (software market) was 5.31 RMB billion, and the PaaS (service market) was RMB 4.45 billion, occupied 15.4% and 12.9% of market share respectively in 2016 (Chart 16).

Source: China Academy of Information and Communication Technology.

According to the survey results by CAICT (2018), a large increase in the proportion of enterprises deploying private clouds in the form of separate procurement software and services, open source software (OSS⁷) is chosen by enterprises to deploy their private clouds more than 80% (Agatha Poon, 2013). OpenStack⁸ has become the mainstream cloud resource management platform, and stronger security has become the most important reason for companies to use private cloud (Rob Shiveley, Krish Raghuram, 2015). The main application scenario on private cloud is enterprise internal IT system (David Linthicum, 2010). The obvious effects of enterprise deployment on private cloud include the improvement of IT operation efficiency, the reduction of IT cost and the reduction of IT operation and maintenance workload (Norman Dee, 2017). Those factors will further increase investment in the private cloud sector.

2.2.2 The Value of Cloud Computing in the Financial Sector

- Effectively reduce the IT cost of financial institutions.

Indeed, one of the benefits of the cloud, especially in the short term, is lower costs (Accenture, 2010). In terms of performance, cloud computing virtualizes physical IT equipment in an IT capability resource pool through virtualization technology and to meet the needs of financial institutions for computing power and storage with the ability of the entire resource pool (Sudhakar. K, Vinay Kumar.G, Sudha Rani. L, 2014). Through the cloud operating system, load balancing of IT equipment can be achieved (Minakshi Berwal, Chander Kant, 2015), the use efficiency of the unit IT equipment can be improved, and the cost of the unit information can be reduced. As a result, cloud computing architecture is far more cost-effective than the traditional financial architecture of mainframes and minicomputers as infrastructure. Accenture, for example, estimates its own IT

⁷ Open source software is a kind of computer software whose source code can be accessed arbitrarily. The copyright holder of such software retains part of the rights under the software agreement and allows users to learn, modify and enhance the quality of the software.

⁸ OpenStack is a free and open-source software platform for cloud computing initiated by NASA and Rackspace, mostly deployed as infrastructure-as-a-service, whereby virtual servers and other resources are made available to customers.

organization could save up to 50 percent of its hosting costs annually by transferring most of its applications to infrastructure clouds (Accenture, 2010).

-Increase speed and agility

Ecosystem connectivity is another business enabler powered by cloud computing. Using cloud services, it is easier to collaborate with partners and customers, which can lead to improvements in productivity and increased innovation. Cloud-based platforms can bring together disparate groups of people who can collaborate and share resources, information and processes. The ability to respond to rapidly changing customer needs is a key competitive differentiator. Like companies in other industries, banks are continuously seeking ways to improve their agility and adjust to market demands. By enabling businesses to rapidly adjust processes, products and services to meet the changing needs of the market, cloud computing can facilitate rapid prototyping and innovation, which helps speed time to market. (Bruce Berriman, Ewa Deelman, Gideon Juve, Mats Rynge, &Jens-S. Vöckler. 2012).

-Top guessing capacity

Cloud computing eliminates speculation about the capacity of infrastructure for financial institutions (Kathleen Jungck, Syed (Shawon) M. Rahman, 2011). When financial companies make decisions before they deploy their applications, they usually take into account the price of new resources and the capacity to handle them. With cloud computing, these problems disappear, such as processing capacity, financial institutions can access the capacity as much or as little as they want, and they can scale and shrink proportionally in just a few minutes.

- Higher degree of automatically operation and maintenance

At present, all the mainstream cloud computing operating systems is equipped with monitoring modules. The cloud computing operating system manages the servers, storage and network devices within the financial enterprise through a unified platform (Michael Hogan, Fang Liu, Annie Sokol & Jin Tong, 2011). Though the centralized management and control of the equipment can significantly improve the management ability of the enterprise to manage IT equipment and realize lean management. In addition, the tag technology can accurately locate the failure of the physical equipment. The troubleshooting can be realized quickly through equipment field replaceable. On the contrary, financial enterprises cannot maintain by themselves in case of equipment failure under traditional financial architecture.

2.2.3 Cloud Computing Applied in China's Financial Industry

Fintech itself is a dynamic combination of financial services and technology sector advantages, with emphasis on the technology-focused start-ups and emerging market participants which have innovated the products and services currently provided by the traditional financial services industry. China is one of the fastest growing markets for cloud computing in the world and has expanded into many areas such as manufacturing, finance, government affairs, medical care, and education (CAICT, 2017). At present, China's traditional financial institutions use cloud computing technology mainly adopts two deployment models: private cloud and industry cloud. However, the acceptance of public cloud relatively lags behind that of other industries, which is closely related to the highly regulated financial sector.

The private cloud deployed by financial institutions is mainly used for storing and running core business systems, and stores important sensitive data (Bogdan Nedelcu, Madalina-Elena Stefanet, Ioan Florentin Tamasescu, Smaranda Elena Tintoiu, Alin Vezeanu, 2015). Financial cloud deployments are generally constructed by purchasing hardware products, infrastructures, and solutions. In the process of using, the outsourcing operation, maintenance, or automatic operation and maintenance are implemented. The deployment of industrial clouds by financial institutions is mainly through cooperation among financial institutions in the field of infrastructure, and through the sharing of resources, a number of technical public services such as public infrastructure, public

interfaces, and public applications are formed in the financial industry (Sharma Archana, 2012). The industry cloud deployed by financial intuitions is mainly used for data processing and services for external customers of financial institutions, or provides resource sharing services for financial institutions and their vertical institutions in certain regions.

Large financial institutions with strong technical strength and economic base try to launch a new IT system by deploying private clouds, transforming themselves from a traditional centralized IT architecture to a distributed cloud computing architecture (Hrishikesh (Rishi) Trivedi, 2013). Due to relatively weak technological capabilities, small and medium-sized financial institutions generally prefer to choose an industry cloud service platform (Katharina Candel Haug, Tobias Kretschmer &Thomas Strobel, 2016).

At present, the use of cloud computing technology by financial institutions usually adopts an implementation path that starts from the peripheral system and gradually migrates. Nonfinancial assistance business systems have a low level of security, and system problems do not lead to significant business risks. Financial institutions generally try to apply the related cloud services to the auxiliary systems such as channel system, customer marketing system and operation management (Mircea Georgescu, Victor Jeflea, 2013). In this way, the flexibility of system management is improved, and the operating cost is reduced, and the relevant user experience is greatly improve.

2.2.4 Cloud Computing Application Case in China's Financial Industry

In 2009, Alibaba set up its cloud sector, known as Ali Cloud, to solve the problem of cloud services not allowed to be provided by foreign cloud providers by in mainland China. As a start-up for cloud providers, China's manufacturers and retail giants have almost been driven by it, shifting to the Ali Cloud.

The development of "Ali Financial Cloud" is part of the sustainable development of Ant Financial Services. Ant Financial apparently needs to have a future-oriented core banking system, thereby, they apply for MyBank license to develop its core banking system by itself instead of looking for external suppliers. After that, Ali Finance has decided to sell its cloud-based solutions to other banks. At present, more than 40 companies applying the Ali Financial cloud, which includes banks, payment providers, and even peer-to-peer platforms.

Ali Financial Cloud advocates reducing costs and increasing flexibility. Ali Finance has its own risk management system, digital customer relationship. Compared with other financial companies, it has almost everything, and the cost is lower, is a complete ecological chain. Ali Financing Cloud can also be used to make up the final gap, and "solve" the financial containment problem, which has been China's efforts for decades. Clearly, cloud computing is a relentless technology.

2.3 Big Data

Big data is a term applied to data sets whose size or type is beyond the ability of traditional relational databases to capture, manage, and process the data with low-latency. And it has one or more of the following characteristics – high volume, high velocity, or high variety. Big data comes from sensors, devices, video/audio, networks, log files, transactional applications, web, and social media - much of it generated in real time and in a very large scale. Big data is larger, more complex data sets, especially from new data sources. These data sets are so voluminous that traditional data processing software just can't manage them. However, these massive volumes of data can be used to address business problems you wouldn't have been able to tackle before (Oracle, n.d.).

With the explosive growth of global production data, the traditional data processing technology has been unable to cope with new challenges, the development of the information processing technology to make data value can be better mining and utilization. As a trend of

emerging technologies, big data have rapidly developed in all areas of the world (Hsinchun Chen, Roger H. L. Chiang & Veda C. Storey, 2012). Its core ideas are mainly two points: more extensive and in-depth digitization, and interconnection and interoperability of data within the entire society. "More extensive and in-depth digitalization" is not equivalent to the electronic paper document in the traditional sense. It refers to the habits, strategies, and models for companies to use data to guide business in the era of big data and a kind of decision-making thinking and process. The final result is to drive the enterprise to improve the innovation ability and enhance the efficiency of enterprise production, and competitiveness. "Interconnection and interoperability of data within the entire society" means that enterprises now facing is not only the internal data interconnection problems but data interconnection issues across the entire society.

2.3.1 The Application Value of Big Data in Finance

-Improve decision-making efficiency

Big data analysis can help financial institutions achieve the fact - centered business approach (CAICT, 2018b). Based on big data, financial institutions are gradually transitioning from static phenomena analysis and forecasting to making dynamic decision-making suggestions aim at different scenarios to respond more accurately to market changes.

-Strengthen data asset management ability

The large use of traditional databases by financial institutions leads to higher costs and insufficient analytical capacity for structured data storage (Frank Hayes, Mark Sykes, Puneet Suppal &Marc Linster, 2016). Through the construction of the big data underlying platform, it is possible to replace traditional databases in some scenes, and to achieve multi-source data storage analyzing of texts, pictures, videos, effectively improving the ability of financial structure data asset management (Amazon, 2018).

-Realize accurate marketing services

Under the impact of the Internet financial model, the operation mode of the whole financial industry faces restructuring, industry competition is intensifying, and the demand for data-based refined operations and product innovation is increasingly pressing. Financial institutions can better identify customers' needs, create better customer experiences and enhance comprehensive competitiveness by utilizing of big data.

-Enhance the ability of risk control management.

Big data technology can help financial institutions conduct a full-scale analysis of customerrelated information, identify suspicious information and illegal operations, strengthen the ability to predict and prevent risks, lead to more efficient and reliable risk management under the condition of using less risk control personnel (Amazon, 2018).

2.3.2 Characteristic of Financial Big Data

The business of financial institutions requires that big data platforms have the capabilities to calculate in real time. At present, the most commonly used big data application scenarios in financial institutions require real-time computing support for precision marketing, real-time risk control, trade warning and anti-fraud services (Oracle.2015). The big data analysis platform can cover existing customers and some high-quality potential customers of financial companies, and carry out portrait and real-time dynamic monitoring of customers to build active, efficient and intelligent marketing and risk management control systems (Oracle.2015).

To achieve the data-driven, technology platform needs to be customized by financial enterprises. First of all, financial companies should conduct top-level design⁹, combine technology and business, and apply technology to every scene of the company's value chain. Secondly, financial

⁹Top-level design: Its original meaning in engineering is to consider the various levels and elements of the project as a whole, to govern the overall situation, and to seek solutions at the highest level.

firms need an overhaul of the financial system. In order to achieve the convergence of data, it is necessary to integrate the data originally stored in hundreds of information systems, redesign and build an architecture for data collection, storage, and transmission. Finally, financial big data need more perfect security measures. Leakage and tampering of financial data may cause systemic financial risks and even endanger social stability. (Xiao Liang, 2016). Partial data such as user authentication and payment authorization information for financial transactions requires full process encryption.

2.3.3 Subversive Changes in the Financial Industry Driven by Big Data

The financial industry itself does not have similar physical production and logistics processes, which is itself a collection of data production, processing, warehousing and transmission. Whether it is a commercial bank, a securities company or an insurance company, their business trading system operates a huge amount of transaction data every day (Daniel. D. Gutierrez, n.d.). Not only that, there is a huge amount of historical data behind each individual as a support for analysis and decision-making. Therefore, for the financial industry, the influence exerted by big data cannot be ignored.

The changes brought by big data to the financial industry are reflected in the following two aspects: 1) Precision marketing: big data changes the information structure, and financial institutions introduce more individualized services through the collection and analysis of customer data. 2) Risk Management: Big Data changes the risk management model, and cloud computing promotes the most accurate and lowest-cost risk measurement. This also means a further improvement of operational efficiency and performance.

Driven by big data, the future financial industry will further shift from "extensive management" to "delicacy management", from "profit-centered" to "customer-centric" transformation, and from "mortgage culture" to "comprehensive risk management system". At the

same time, the development of big data will also promote the continuous emergence of various new businesses such as internet finance and mobile finance. Many technology-led Internet start-up companies will also participate in the finance industry to share the gluttonous feast of big data.

2.3.4 The Application Cases of Big Data in the Financial Field

Case: Risk Control of Ali Finance under Big Data Era

In recent years, Chinese internet companies have begun to enter the financial industry on a large scale. "Internet finance" has become a hot topic in major media reports. Among the emergence of Internet finance companies, Alibaba Group's Alibaba Finance is the most compelling one. From Alipay to Ali Micro-Finance, to Yu Eao, which is popular among the people, Ali Financial has gradually touched the traditional financial sector and made traditional commercial banks feel the crisis. However, Ali Finance can reach a strong position today depends on its strong platform foundation and the support of big data. Alibaba always focuses on the e-commerce platform and continuously expands new businesses, which in turn strengthens the consolidation of the core value of the platform. With the development of the platform, the scale of customers and user agglutinant has increased, and its business innovation and outward expansion capabilities have been further improved. In July 2012, Tmall and Alibaba Cloud and Wannet jointly launched the "Cloud.tmall.com" to provide data cloud services for Tmall, Taobao, e-commerce and e-commerce service providers. Whether it is C2C's Taobao, or B2C's Tmall, or B2B's Alibaba, it has brought a very large number of potential customers and massive customer transaction data. It is on the basis of this massive amount of data that Alibaba has been able to sublimate its financial services with big data.

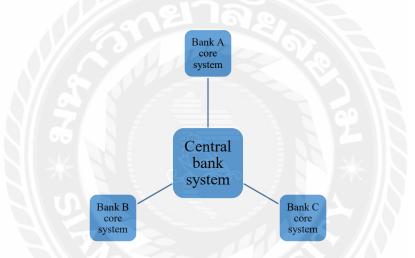
Through the support of the platform and big data, Ali Finance can easily understand the information and credit situations of loan customers and effectively control risks. In the data analysis model, Ali Financial will fine-tune various weights in real time to make the data analysis more

accurate to ensure that the bad debt rate will not rise. Take Ali Micro-Finance as an example. Before loans, Ali Micro-Finance can utilize the company's e-commerce business data and combine tripartite certification information to judge the company's operating status, credit conditions and solvency. During the loan process, risk monitoring can be made in advance through Alipay, Alibaba Cloud, and the future logistics system that monitors the corporate information flow, logistics, and capital flow. Alibaba will timely adjust user credit ratings based on real-time information. Account transactions, fluctuations in orders, changes in Alipay's funds, etc., will all lead to the adjustment of the user's credit rating. Once it breaks through the "red line", Ali Micro-Finance will require the company to repay early which will be the first to withdraw funds in various loan channels and effectively reduce the non-performing loan ratio. After the loan, Alibaba Finance will further monitor the company's business operations and deepen the credit evaluation. Default customers and online shops will be restricted or shut down, and other network customers will be notified of their potential risks.

The quality of online financial customers is uneven, and financial needs are also different. It is impossible to reduce risks through traditional commercial bank loan models such as real estate mortgages. Hence, a big data platform required to better tap potential demand, conduct accurate credit and achieve effective risk control. The advantage of Internet companies is that they have accumulated a large amount of data. Whether it is Alibaba, Tencent, or Baidu, they have stored thousands of customers' data on consumer behavior and preferences. By analyzing these data, the enterprise can judge the credit of the borrower to facilitate the transaction and reduce the transaction risk.

2.4 Block Chain

A block-chain, originally block chain, is a continuously growing list of records, called blocks, which are linked and secured using cryptography. Each block typically contains a cryptographic hash of the previous block, a timestamp and transaction data. By design, a blockchain is inherently resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way". For use as a distributed ledger, a block-chain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without the alteration of all subsequent blocks, which requires collusion of the network majority.

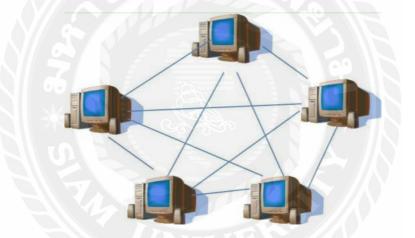

When it comes to the block chain, Bitcoin must first come to mind. From a technical point of view, Bitcoin's system consists of three layers: Underlying technology – block chain, Middle Links – Protocols, Upper Level – Currency (Mitch Steves, 2018). The upper layer of the currency here refers to Bitcoin, and the middle layer is the protocol, which is the block chain-based fund transfer system. The underlying technology is a block chain, which is a decentralized, distributed recording of an open and transparent transaction record ledger whose transaction data is shared across the entire network. The "miners" are responsible for the records and supervision by the entire network.

This solution is to allow any node participating in the system generate a data "password" for verifying the validity of its information and linking to the next database block through a series of data blocks (each data block contains data for all information exchanged by the system within a certain period of time) associated using a cryptographic method. Bitcoin is a global electronic currency that can be traded and is the most successful application of block chain technology (Marco Iansiti, Karim R. Lakhani, 2017). Currently, banks and other institutions are paying more attention to the block chain technology behind Bitcoin.

Block chain is a decentralized public ledger, which is the digitalization of all encrypted currency transactions. As the growing "completed" blocks are recorded and added to it in chronological order, it allows market participants to keep track digital currency transactions without central record preservation.

The evolution of block chain is from 1.0 to 2.0 to 3.0. Block chain 1.0 is a digital currency application represented by Bitcoin and its scenario includes currency functions such as payment and circulation (Narayanan, 2018). Block chain 2.0 is a combination of digital currency and smart contracts, and it optimizes the use of a wider range of scenarios and processes in the financial sector. Block chain 3.0 goes beyond the financial sector to provide decentralized solutions for various industries such as automated procurement, intelligent IOT applications, supply chain automation management, virtual asset transfer, and property registration.

2.4.1 Analysis of Block Chain Characteristics



-The Characteristics of Traditional Payment Models - Centralization

The Picture above is a data exchange diagram of a traditional bank payment service. When Bank A's customers conduct intra-bank transfer transactions through outlets, online banking, and mobile phones, the information is transmitted to the data center of the headquarter to complete the registration of information and transfer of funds. The customer's funds, accounts, and other information are all based on trust in A's core banking system server. From the perspective of bank A, this is a typical centralized mode between head office and branches. The server of bank A core system is the central node. In the same way, when bank A's customers transfer funds to bank B across banks, they need to go through the information transmission path of the core system of bank A-central bank system-bank B core system. From the overall process, the central bank becomes the center of the transaction. This centralized model is the basic mode of financial transactions in China and even in the world.

-The Characteristics of Block Chain Payment Model

Unlike the traditional centralized model, block chain is a typical decentralized model. Each computer host is an equal node. Each node in the system can interact directly without a central node. At the same time, the transaction information of any two nodes is encrypted and transmitted to the entire network (Ian Pattison, 2017). All nodes record all transaction information of the system with an encrypted block storage manner and in time series, thereby forming a new decentralized mode.

In general, block chain technology contains four main features. The first one is decentralization. In the block chain payment model, there is no central core system and central payment and settlement organization. Information directly exchange between nodes, and any node damage will not be affect the entire network operation. Under this payment model, transaction efficiency, low costs and business continuity can be achieved. For instant, during the Greek financial crisis, the supervisory authority announced that the per capita daily withdrawal was limited to 60 Euros. However, in Athens, Bitcoin ATM has adopted a decentralized model and are not subject to regulatory restrictions, residents were free to withdraw funds and not limited by quota restrictions.

The second characteristic is trustless. Unlike traditional trust models based on government credit or laws and regulations, the block chain payment mode is an open source algorithm, which make the system operating rules transparent. In this mode, data exchange between each node does not require mutual trust and can be anonymous. Simultaneously, each transaction will be recorded in real time to prevent data from being controlled and tampered (Ian Pattison, 2017), which can effectively avoid the violation behavior of the trust subject.

The third feature is collective maintenance. A huge computing power requires to be supported the financial systems. From the block chain itself, the computing power of a single machine may not be high, however, computing power can be greatly enhanced through a distributed peer-to-peer model. As of now, the overall computing capacity of bitcoin mining machines has exceeded 9 times the sum of computing power of top 500 large-scale servers worldwide. This model is similar to the core system architecture concept of China online banking financial cloud.

The last feature is the security database. A single node may be modified by violence, however, since the transaction data is distributed to all nodes of the entire network, the data modification of a single node is not approved by the entire network. Theoretically, data cannot be tampered with as long as it does not control more than 50% of the computing power of the entire system and the more nodes involved in the system, the stronger the computing power and the higher the data security.

2.4.2 The Status of China's Block Chain Development

China's block chain ranked 9th in the business models of the China top 50 companies (KPMG, 2017), by utilizing the block-chain technology, 11-12 billion dollars can be saved in global capital markets on an annual basis. Block chain technology is no stranger to Chinese investors, bitcoin volume is now exchanged in and out of the Chinese yuan has exceeded 80% of all. However, when it comes to its app in financial sectors, block chain start-up companies still in an experimental

stage. Purpose of boosting R&D and deployment of block chain applied, several consortiums have been set to speed up the block chain technology applied in finance, commerce, public services and other industries in China, such as China Ledger Alliance, and Financial Block Chain Shenzhen Consortium (Xingnan Wang& Rui Huang, 2017).

Judging from the application of block chain, China's block chain market structure will be dominated by block chain 2.0 applications and supplemented by block chain 3.0 applications in the coming years. The financial transactions and asset management in the financial sector by the application of block chain 2.0 should be the most mainstream application scenarios in the Chinese block chain market in the next few years. However, at present, due to complex scenarios and regulatory issues in the financial sector, many business scenarios that block chains cannot be further innovated. The block chain 3.0 which represented by data certification has achieved a breakthrough at this stage due to its simple application scenario and lack of government supervision.

Currently, a total of 77 start-up companies and companies related to the block chain nationwide. From the application perspective, there are 24 companies engaged in the research and application of the underlying block chain platform, 12 companies involved in digital assets and credits, digital certificates, 8 companies contribute to creditworthy businesses, and 6 companies are engaged in data security. In addition, there are companies engaged in charity medical care, energy extraction, digital currency and advertising, and smart wearable devices.

2.4.3 The Financial Application Scenario Interpretation of Block Chain

-Identity: Knowing who you're dealing with

For banks and financial institutions, ensuring compliance with customer (KYC) compliance is an important step to prevent inappropriate and illegal use of funds and services (Jo Lang, 2017). Banks have been studying how to share customer information with partners in a safe way, and block chain-based solutions are a clear contender. Password protection can help maintain information security, the ability to share continuously updated records with many parties can be realized, and the management process can be simplified by reducing the duplication of unnecessary information and requests.

-Payments: Speeding time to settlement

Though digital payments have become more common, sending money from one individual to another isn't always a simple endeavor. Traditionally, it's been hard for those involved in a transaction to trust that they will receive their payment. Intermediary financial institutions like clearing houses, regulators and other banks offer certainty, but they also slow down the process. If a payment crosses borders and exchanges in currency are involved, it could take days or weeks for clearing and settlement to occur because of inefficiencies in reconciling records on separate ledgers from intermediaries. By design, block-chain provides certainty because participants can view the same ledger of transactions that is updated through consensus and made immutable through cryptography. In the long term, this can make it possible for individuals and corporations to transact more directly, making payments simpler, faster and more secure.

-Trade finance: Reducing friction in global markets

The friction of global markets has made the process of financing and trading complete long and complex (Jo Lang, 2017). Friction in global markets makes obtaining financing and completing trades a lengthy and complex process. Following traditional practices, which include various activities such as lending, issuing letters of credit, factoring and insuring the parties, it can take days up to weeks to complete a single transaction! Paper documents have to be sent back and forth to be validated and reconciled, and in the interim, capital gets tied up and business slows. By using a shared version of the truth on block-chain, trade partners can interact with greater trust, increasing the efficiency with which companies can access funding as well as saving time and costs throughout the trade process. -Supply chain finance: More optimized Process

Under the traditional supply chain finance model, multi-tier suppliers are faced with the problem of financial difficulty, which is due to: 1) information asymmetry; 2) credit cannot be delivered; 3) payment settlement cannot be completed based on the agreement; 4) commercial ticket cannot follow split payment terms. For multi-party supply chain finance, block chains rely on core technologies such as distributed ledgers, encrypted ledgers, and smart contracts to provide a good solution to the above problems. The block-chain registers the goods on the ledger as transactions to determine the parties involved in the production chain management, as well as the product's origin, date, price, quality, and other relevant information. Neither party will not have ownership of the ledger, nor will it be able to manipulate the data for private gain, and the transaction is encrypted and has an immutable nature, thereby the ledger will not be compromised in the whole process. In addition, the supply chain finance based on block-chain technology will significantly reduce manual intervention and digitize the current process of paperwork. All participating parties can use a decentralized document-sharing and pay automatically when the scheduled time and results are reached, greatly improving efficiency and reducing the potential for errors caused by manual transactions.

2.4.4 Analysis on Application Cases of Block-chain in Financial Sector

Block Chain ABS Investment Bank: JD ABS Cloud Platform

In March 2017, JD Finance announced that its asset cloud factory underlying asset management system based on block chain technology has been officially launched. In fact, JD Finance announced the launch of the "JD ABS¹⁰ Cloud Platform" as early as the third quarter of 2016, however, the initial release of underlying system was not implemented by block chains.

¹⁰ ABS refers to Asset-Backed Security, It is a bond or a bill that is issued on the basis of a loan agreement with a bank, credit card companies, or other credit provider, or accounts receivable as a guarantee.

During the two years from 2015 to 2017, the distribution of JD IOU note¹¹ assets exceeded 10 billion yuan. JD.com started from its own experience in issuing ABS and began to actively build "ABS cloud platform" to help other Internet companies to issue ABS assets.

Asset Cloud Factory is one of the three major businesses of JD Company's "ABS Cloud Platform." The core of capital intermediary business of asset cloud factory is to provide liquidity and risk management services to customers by creating financial products and acting as counterparties, and to reduce the threshold for issuing ABS for consumer financial service companies and the issuance costs. In a typical business scenario of the asset cloud factory, JD Finance, as the funder, joins with the cooperative consumer financial service companies to participate in the risk control, borrowing, and repayment of each asset, and is responsible for the full-process management of structured issuance after the formation of asset packages. Since the process of formation of the underlying asset package often involves multiple financial institutions such as the asset side, the capital side, and the SPV (special purpose vehicle), all participating parties have their own business systems, with large transaction volumes, high transaction frequency, and inter-agency information. Therefore, some problems such as accuracy of information transmitted and reconciliation settlement may exist. Meanwhile, the problem of confidence in the authenticity of the quality of the underlying asset is also a pain point in the industry.

Block chain technology makes it possible for the asset cloud factory to implement decentralized protocols, and can securely store transaction data, ensure that information cannot be forged and falsified, and smart contracts can be automatically executed without the need for review by any centralized agency. By using of block chain technology enables all market participants can participate in the ABS transaction process, jointly maintain a set of transaction book data, real-time

¹¹ JD IOU note is a new payment method of "consume first, pay later" launched by JD.com. It uses an IOU note for payment on JD.com website and can enjoy up to 30 days of deferred payment or up to 24 installments. The method is the industry's first Internet consumer financial product

control and verify the contents of the ledger, and maintain the authenticity and integrity of the data book.

In this way, the transparency and accountability of the asset-backed security can be improved, the authenticity of the underlying asset data of the consumer financial service companies can be guaranteed, and realizing the asset fidelity of consumer financial service companies, thereby increasing institutional investor confidence and reducing financing costs. JD block chain technology is jointly developed by JD Finance and its investment company, Goldenstand, and it is also an application of block chain technology in commercial environments. In addition to JD, many Chinese companies are also actively developing and applying block chain technology and applying it to the financial sector. Companies like WeBank, Tencent, and Alibaba have developed their own block chain technology and used it in their own businesses to achieve relative successes.

2.5 Artificial Intelligence

Artificial intelligence (AI, also machine intelligence, MI) is intelligence demonstrated by machines, in contrast to the natural intelligence (NI) displayed by humans and other animals. In computer science AI research is defined as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving

Artificial intelligence (AI) is the process of simulating human intelligence through machines, especially computer systems. These processes include learning, reasoning and self-correction. Special applications of artificial intelligence include expert systems, speech recognition and machine vision. Since the 1950s, through the three waves of technological revolutions, the understanding of artificial intelligence among academics and industry has been divergent. The

diversified development of technology and commerce has led to varies understand of definition, motivation and form of expression of artificial intelligence.

2.5.1 What Does Artificial Intelligence Do

Artificial intelligence obtains two capabilities: "fast processing" and "self-learning". Artificial intelligence enables quick processing of learning, decision making and actions. The speed of computers handling and communicate information, parallel computing and linear computing is faster than humans. In addition, the computer can continuously iterate and optimize the positive cycle of "test-verify-learning". For instant: the traffic in the city is complicated, and there is a complex connection between every intersection and road section. In Ali ET artificial intelligence dispatch traffic application, the robot needs to process and learn the massive historical information data of thousands of sections to obtain the all-day traffic model of the road section, and then combines the intelligent video information (including vehicle identification, vehicle speed identification, etc.) returned from each intersection of the city to make a global, real-time analysis (BCG, 2016). This process poses greater challenges to data processing capabilities in terms of scale, complexity, and real-time performance.

Artificial intelligence can be more flexible and learn to manage knowledge autonomously and support the systematic management of "production-storage-application-update" of knowledge. For example, in Taobao and Tmall, there are nearly 50,000 hotline calls every day. These massive amounts of voice data are self-learned by artificial intelligence robots, thereby the robots obtain the ability to "listen" and "understand" knowledge, which can be applied to various industries and scenes related to voice interaction such as smart customer service voice interactions, internet car voice commands. In some specific scenarios, such as court trial shorthand, some new data will be generated and new knowledge adapted to this scene. These knowledge and data are also used to update the knowledge base of speech recognition and are quickly used by other applications. This is also the source of knowledge that Ali ET can defeat the world's shorthand runner-up (BCG, 2016). How to make AI master a good knowledge management is an important part of systematic project. "Double 11" is a global consumer shopping carnival initiated by Taobao Tmall. In 2015, it set a world record of 140,000 orders a second. The huge volume of orders has also brought about the peak of user problem consulting services. Alibaba's algorithm engineers have raised the time-validity for automatic update of the knowledge base to minutes in the industry for the first time through the analysis and prediction of massive issues, enabling intelligent resolution rate to achieve up to 94% in this scenario.

2.5.2 The Impacts Brought by AI

The progress of artificial intelligence is catalyzed by the basic layer of cloud computing and big data (Feng Liu, Yong Shi & Peijia Li, 2018). The breakthrough in algorithm brought about by deep learning gives rise to a wave of artificial intelligence, which greatly improves the classification accuracy of complex tasks, consequently, promotes the rapid development of computer vision, robot learning, natural language processing, robotics, and speech recognition (Javier Andreu Perez, Fani Deligianni, Daniele Ravi & GuangZhong Yang, 2018). Artificial intelligence will bring great changes in the future where its impact will be far greater than the Internet's transformation of various industries. It will completely change people in all fields and generate more value, make a lot of repetitive work now being replaced, people can be freed from labor-intensive work and release manpower to do more valuable things. In the financial sector, there are mainly the following aspects:

- More active financial service model

Finance belongs to the service industry and is engaged in the business of value exchange between people and people. Before large-scale application of Internet technology, financial institutions needed to invest a lot of manpower and material resources for customer relationship maintenance and exchange, found customer needs to obtain financial business value. For an instant, the medium for banks and customers to establish relationships was mainly in bank outlets. Through face-to-face communication between customers and bank staffs, customer's needs can be quickly met, and even through some of the details of conversations and observations to excavate potential needs. Through a period of communication, customers and bank staff have established a deep relationship that led to increasing degrees of customer reliance on bank personnel, called customer stickiness. Once the stickiness exists, customers rarely compare the financial services recommended by the bank staff, such as when purchasing wealth management products, they would not compare the profitability of multiple banks.

In the Internet era, the rapid development of Internet technology and Internet finance enterprises have prompted financial institutions to vigorously carry out the system construction work. The emergence of online banking and APP has reduced the cost of banking services to customers. Regardless of whether it is a client or a web page, standardized function templates are adopted. Customers need to learn how to use them, and find the desired financial services among many menu functions. The communication between customers and financial institutions is unidirectional. It makes the "cost of customer demand" shift to the customer from the financial institution, that is, while facilitating the financial institution, the customer needs to find and meet their own financial needs by themselves by browsing function menu, which also causes the bank to lose the opportunity to create more financial value.

No matter how to optimize the function menu, customers always have to pay "demand costs". In this process, customers' financial professional degree is passively enhanced. They will actively compare which financial institutions provide the best services and the most efficient service, and customers' dependence on financial institutions continues to decrease, and may be sought by other peers or even Internet finance companies. For example, banks have been greatly impacted by third-party payment agencies over the past few years, whether in payment sector or other C-side financial services. Bank's innovation flexibility and policy supervision standards being inferior, and individual users were circled by internet financial institutions on a large scale.

The rapid development of artificial intelligence has enabled robots to simulate human functions to a large extent, and has achieved humanized services and personalized service. This will exert a profound impact on the high-end financial service value chain. Artificial intelligence will become an important factor in determining the bank's communication with customers and discovering financial needs of customers.

It will also bring a new round of revolution in financial products, service channels, service methods, risk management, credit financing, and investment decisions. Artificial intelligence technology can be used at the front-end to serve customers, supporting decision-making in credit granting, various types of financial transactions and financial analysis at middle-ground, and used in the background for risk prevention. It will drastically change the existing financial landscape and make financial services (Banking, insurance, wealth management, lending, investment, etc.) more personalized and intelligent.

- Financial big data processing capacity greatly improved

The financial industry is closely related to other industries and has precipitated a large amount of useful or useless data, including massive scales of financial transactions, customer information, market analysis, risk control, investment consultants and other information (BCG, 2016), simultaneously, a large amount of data exists in an unstructured form, such as the customer's identity card scanning information, which occupies valuable storage resources, however, cannot be converted into analytical data for analysis, makes the processing of financial big data face great challenges. Through the use of intelligent deep learning systems, robots can continuously improve or even exceed human knowledge answering capabilities, especially in the handling of complex data such as risk management and transactions (Darrell M. West, 2015). The application of artificial intelligence will significantly reduce labor costs and enhance financial risk control and business processing capabilities.

2.5.3 Application Scenario of Artificial Intelligence in Financial Field

At present, the scope of artificial intelligence technology applied in the financial field mainly focuses on smart customer service, intelligent investment advice, intelligent risk control, intelligent investment research, and intelligent marketing.

-Intelligent customer service

Intelligent customer service mainly uses voice technology, natural language understanding and knowledge map as the technical basis to master customer needs, by automatically acquitting customer features and knowledge bases to help customer service solve customer problems quickly. The intelligent customer service system adopts the natural language processing technology to extract the customer's intention and build an understanding and reply system of the customer service robot through the knowledge map (Coveo Solutions Inc., n.d.) Intelligent customer service interacts with users in multiple channels through text or voice, providing customers with more convenient and personalized services, and further enhancing the user experience while reducing the pressure on manual services and operating costs.

- Intelligent investment advice

Intelligent investment advice, also known as robotic investment advice, is based on investors' risk preferences, financial status and financial management goals, using intelligent algorithms and portfolio theory to provide users with intelligent investment management services (CAICT, 2018b). Intelligent investment advice is a standardized data model based on robot learning algorithms and modern asset portfolio optimization theory which applied the network platform and artificial intelligence technology to provide customers with personalized financial consulting services (Jonathan Walter Lam, 2016). Traditional investment advisers need to stand in the perspective of investors to help investors to conduct portfolio management that meets their risk preference characteristics and adapts to the market performance in a specific period. The application

value of intelligent investment advice is to replace or partially replace expensive financial consultants' manual service, to standardize and batch investment advisory services, reduce service costs, wealth management fees and investment thresholds, and achieve more widespread investment services.

- Intelligent risk control

The application of knowledge mapping, deep learning and other technologies in the field of credit management and anti-fraud integrate structured and unstructured big data from different sources (Deloitte, 2016). By analyzing the connected data, such as upstream and downstream companies, partners, competitors, parent and subsidiary companies, and investment, and applying knowledge mapping technologies to monitor the inconsistencies in the large-scale system and identify possible fraud points. In the area of credit risk management, associated knowledge maps can use the credit evaluation model established by "big data + artificial intelligence technology" to accurately depict user's portraits, conduct comprehensive assessment of users, and improve risk management and control capabilities.

- Intelligent investment research

The traditional investment research business needs to collect a large amount of data to conduct data analysis and report writing, and investment research personnel need to spend a lot of time to collect and process data every day. Intelligent investment research is an intelligent integration of data, information, and decision-making based on big data, robot learning, and knowledge mapping technology, which realizes intelligent association between data, forms a document for use by analysts and investors, assists decision-making, and even automatically generates research report (Salla Paajanen, 2017).

- Intelligent marketing

Artificial intelligence can accurately target user needs through user portraits and big data models to achieve accurate marketing. Based on quantifiable data, intelligent marketing utilizes technologies such as big data, robot learning and computing frameworks to analyze consumer consumption patterns and characteristics of the individual, so as to divide customer groups, thereby, accurately seek out target customers and conduct accurate marketing and personalized recommendations (Financial Stability Board [FSB], 2017). Compared with the traditional marketing model, intelligent marketing obtains the characteristics of strong timeliness, high accuracy, high relevance, higher cost performance, and strong personalization.

2.5.4 Application Cases of AI Applied in Financial Field

Case: Alibaba

Google, IBM and other international giants have penetrated artificial intelligence technology into all aspects of various products. On the whole, China financial industry has gradually begun to apply artificial intelligence technology. With the promotion of policy and investment in the artificial intelligence industry, it is expected that the widely used of AI will soon come.

Alibaba's Ant Financial Services Group organizes a special team of scientists specializing in cutting-edge research in the field of artificial intelligence such as robot learning and deep learning, and conducts a series of innovations and applications under the business scenarios of Ant Financial Services Group, including microfinance, insurance, credit investigation, intelligent investment advice, customer service and other fields.

According to the statistics released by Ant Financial Services Group, the use of robot learning has reduced the fictitious trading rate by nearly 10 times in the Ant Check Later (A

consumer credit product)) and microfinance business of MYbank¹², and developed an OCR system based on deep learning for Alipay's document verification system, which reduced the document verification time from 1 day to 1 second and increased the passing rate by 30%. Taking intelligent customer service as an example, during 2015 "Double 11", 95% of the remote customer service of Ant Financial was completed by big data intelligent robot, and automatic speech recognition was realized 100% at the same time. Artificial intelligence comes into play when users enter "my customer service" through Alipay. "My customer service" can automatically "guess" several points that the user may have in question, and this part is a common problem for all users. More accurate is that these are personalized questions based on variables such as user services, duration, and behavior. In a communication, automatic answers are given through deep learning and semantic analysis. The accuracy of the problem recognition model has been greatly improved in the past time, in the business such as Ant Check Later, the accuracy of the robot answer is increased from 67% to more than 80%.

¹² MYbank is China's first core system based on cloud computing architecture, launched by ant financial as a major shareholder.

Chapter 3 Methodology

3.1 Research Methods

Qualitative research approaches are employed across many academic disciplines, focusing particularly on the human elements of the social and natural sciences (Given, 2008). In 2005, Denzin, Norman, Lincoln, and Yvonna noted that in less academic contexts, areas of application include qualitative market research, business, and service demonstrations by non-profits, thereby, a qualitative research approach was chosen to conduct the entire paper because the attribute of this paper is descriptive research. The features of qualitative research such as, asking broad, open-ended questions, focusing on experience, opinions, feelings and knowledge match with the Openness of the questionnaire conducted in this paper. As mentioned in Chapter 1, a questionnaire survey would be conducted in the process of paper writing. Therefore, the data sources applied in Chapter 4 all came from the questionnaire results.

It's worth noting that: an openness questionnaire survey was issued in the form of web-based distribution in a total of 300 copies, of which 256 were valid questionnaires. The questionnaire included a total of 25 questions. The first 5 questions were the basic information on respondents, including gender, age, occupation, education, etc. The 5-10 questions were the basic content of Fintech. This part of the questions were designed to see if the respondents know about Fintech and how well they know it. Question 10-15 covered relevant application fields, application scenarios of Fintech, as well as the opportunities and challenges arising from Fintech, and the organizations that respondent believed will be the most disruptive in the future. The questions of 15-20 were mainly related to the new changes that Fintech will bring to relevant industry in the future, including the flow of involved services and input of concerned technologies. The purpose of the question No.20-25 was designed to understand the main factors that currently impede the innovation of Fintech and financial institutions, as well as the factors that hinder the cooperation between the two sides.

Then, the respondents interviewed in this questionnaire mainly contain the following characteristics: 90% respondents are engaged in work related to Fintech, such as banking, financial lending, e-commerce and medical fields aged between 18-40 years old who had received higher education (bachelor degree and above) and regard as the most direct beneficiaries and promoters of Fintech.

3.2 Research Question

Research question is the starting point of methodology for academic research in natural science and social sciences. The answer to a research question will help address a "research problem" which is a problem "readers think is worth solving" (Booth & Wayne, 1995).

Based on the application trend and present situation of financial technology in China's financial industry, the main research questions in this paper focused on the impacts brought by Fintech when it applied to the financial industry and main challenges in the Fintech supervision process. The research question is are followers:

1. Which parts of the financial sector are likely to be the most disrupted by Fintech over the next 5 years in China if they cannot catch up with the trend of financial technology development?

2. Which entities are likely to be the most disruptive driven by financial technology in the next 5 years in China?

3. Based on the current application of financial technology in the financial industry, what benefits financial technology brings to the financial sector.

4. Based on the development of financial technology, what kind of challenges can it bring to the financial industry?

5. Since the increasing application of financial technology in the financial industry, what are the problems in the process of cooperation between financial technology companies and financial institutions?

Above research questions will be analyzed in detail in Chapter 4 one by one. It is worth noting that since the questionnaire survey covers a wide range of issues and the degree of openness of the questionnaire is relatively large, thereby, during the subsequent analysis of the questionnaire results, samples with more than 50% support will be selected for conducting the analysis.

3.3 Research Design

"In your dissertation you can define research design as a general plan about what you will do to answer the research question" noted by Saunders, Lewis, and Thornhill in 2012. In other words, research design is the framework that has been created to find answers to research questions.

The descriptive research followed a non-causal investigation, and the purpose of this paper was trying to clearly identify the main segments of Fintech, found out how technologies-related applied in the financial industry in China, how it worked, and the problems encountered in the process. Here, a phenomenological approach of qualitative research would be applied in this paper which rely on the participant's own perspectives to provide insight into their motivations and the researcher was partial interference to the objects. Then, study setting as non-contrived. In the whole study, secondary data of Fintech and financial filed since 2008-2018, and primary data from questionnaire results were e both utilized, and unit of analysis were individual, on the side, several case study also be conducted. Finally, the time horizon of the study was cross-sectional and total research time lasts for six months.

3.4 Data Collection

Data collection is the process of systematically collecting and measuring information on target variables and then enabling people to answer relevant questions and evaluate results. As a descriptive research paper, a questionnaire survey was conducted to supporting the entire researching, thereby, the data collections in the whole paper were directly come from the questionnaire results by the author and also contained individual data from various types of annual reports or research institutes such as KPMG, also included data summarized from existing secondary data. Since the wide range of technologies involved in the application of Fintech, the above-mentioned data sources were mainly derived from the development and application of the financial sector of China's and Fintech industry, including the third payment data, and market data of related technologies, such as cloud computing. The following Chapter, facts and findings from the questionnaire survey will be analyzed in detail.

Chapter 4 Facts and Findings

4.1 Financial Sectors are Likely Disrupted by Fintech

The survey results show on the Chart 17 indicate that the more than 50% respondents ranked the top 3 areas where financial industry may be disrupted by Fintech were: consumer banking, fund transfer & payment, and investment & wealth management, following by commercial banking (include SMEs banking).

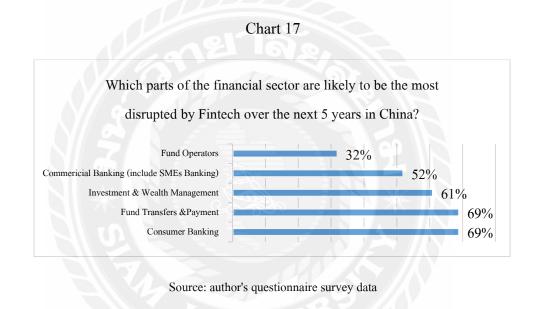
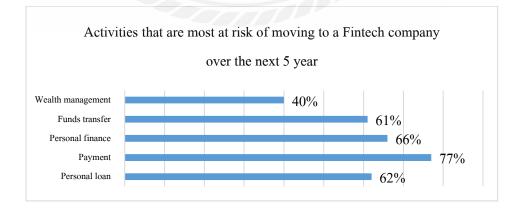



Chart 18

Source: author's questionnaire survey data

Results show on Chart 18 indicate that more 60% of respondents also believed that some existing businesses will also move to independent Fintech companies, such as payment, personal loan, personal finance and funds transfer over the next 5 years.

In the next five years, these areas will undergo great changes under the impacts brought by of Fintech. These areas may continue to be controlled by financial institutions and may also move to independent financial technology companies. For financial companies, whether it is to catch up with the development of Fintech, or whether it stop, both will affect the survival of these areas.

The main reasons for the above phenomenon is that many independent Fintech companies are not only equipped with advanced technologies, but also have considerable strength in the process of commercial expansion. For example, Alibaba and Tencent, in the process of market expansion, they not only play the role of genetic companies, but also actively expand business scope and areas by relying on their own technological capabilities.

4.2 Traditional Financial Institutions are to be the Most Disruptive in Future

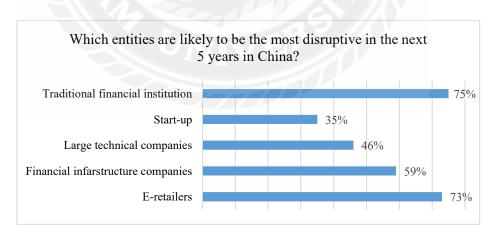
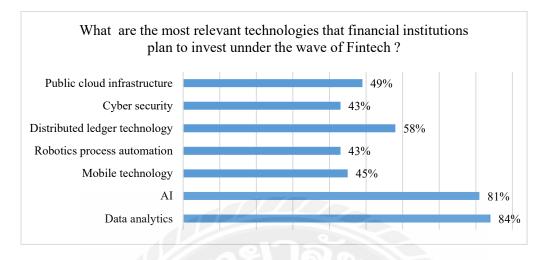
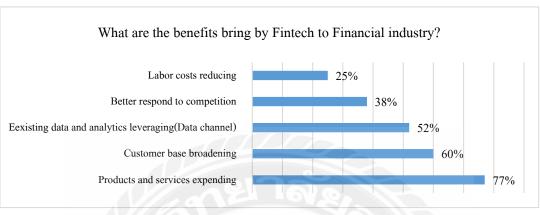



Chart 19

Source: author's questionnaire survey data


Source: author's questionnaire survey data

The survey results show on Chart 19 indicate that China's traditional financial institutions (financial institutions) are regarded as the most subversive force. The demand for self-transformation of Chinese financial institutions is urgent and the speed of transformation is unprecedented, which is driven by the trend of the Fintech development. The above results are due to the fact that with the transformation of Chinese financial institutions, in the future, they will focus on the application of emerging technologies such as big data analysis, artificial intelligence, block-chain, and robotic process automation show on Chart 20 in the business. The need for self-transformation of Chinese financial institutions is more urgent than that of all countries and regions, and the speed of transformation is also unprecedented due to the driven by Fintech development.

4.3 Benefits Brought by Fintech to Financial Industry

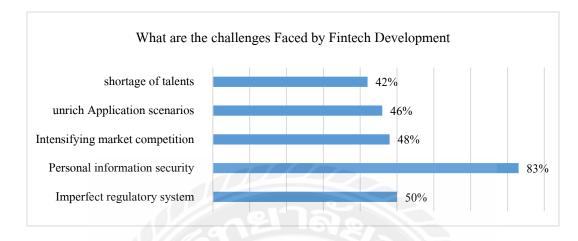
On the chart 21, the results show that Chinese respondents believed that "expanding the scope of products and services" and "broadening the customer base" are two major opportunities faced by financial institutions under the trend of financial technology, following by leveraging existing data and analytics. Regarding the benefits brought by Fintech to the financial industry, the

reasons analysis will be conducted through three dimensions: customer, product and services, and channel.

Source: author's questionnaire survey data

4.3.1 Customers: Severing Population Under-served

Payments, personal loans, and fund transfers are the top three main areas where Chinese consumers are adopting Fintech services in China. Annual report 2016 for China online P2P industry pointed out that P2P lending amounted to RMB 2.06 trillion in 2016, representing over 16% of total RMB new loans and almost double the level in 2015. Third-party online payment volume also grew at an astonishing pace, with market share in total non-cash payment transactions almost doubling from 1.4% in 2015 to 2.7% in 2016¹. The low cost and more effective reach of Fintech will enable service providers to expand their user base to those who have not previously received financial services coverage; from large-scale enterprises, urban residents and the wealthy to SMEs, individual businesses and rural consumers.


¹ PBOC's quarterly Payment Statistics Bulletin.

4.3.2 Product and Service: Experience First

In the competitive environment of Fintech, the most important factors for retaining customers include accessibility, ease of use with intuitive product design and faster service. The expectations of Chinese consumers have evolved from product-base to the experience-driven (PwC, 2017). Financial institutions and Fintech companies are therefore shifting away from an unsophisticated, standardized approach to a tailored and contextualized offering-enable by technology. Driven by emerging technologies, Fintech companies have enabled financial services to achieve leapfrog development. For example, innovative mobile payment and fund transfer solutions have made cash and debit cards becoming less necessary media for daily transactions.

4.3.3 Channel: Mobile is King

The very first and so far the biggest disruption that Fintech has had in China's financial services is in channel. While branch networks still dominate, they will diminish over the next five years, with e-channels, in particular, mobile App, moving to center stage (PwC, 2017). Consumers have already realized the amazing growth of mobile payments and online loans. In the future, other types of financial services will also catch up with the momentum of "mobilization". Financial institutions need to be prepared.

4.4 Challenges Faced by China's Fintech Development

Chart 22

Source: author's questionnaire survey data

4.4.1 Personal Information Security Issues

Based on the result of Chart 22, 83% respondents indicate that the biggest challenge brought by Fintech is personal information security. There are three main reasons for this problem. First, Fintech has brought the whole process of financial business into a digitized form, in particular, a large number of non-traditional financial companies have become the main players of the financial services market. The expansion of personal financial information and has increased of channels have increased the risk of information leakage objectively. The second is that Fintech application derives a large number of innovative financial service models, often owing to the lagging of supervision, which makes it easier for some illegal organizations to use regulatory loopholes to obtain or use personal financial information. Third, a large number of Fintech applications are currently focused on gaining benefits and increasing value. Technologies that can directly generate revenue are often adopted and developed on a large scale, while security protection is a cost-based investment, and it is difficult to bring significant economic benefits, resulting in a remarkable imbalance between the current Fintech business development capabilities, security prevention and control capabilities.

4.4.2 New Challenges to Supervision

The results show on Chart 25 indicate that 50% of respondents said the second challenge faced by Fintech development was inadequate regulation. Fintech brings about a series of financial service innovation model, also brings about new challenges to the supervision of the financial industry.

Fintech possesses characteristics of cross-market and cross-industry, coupled with the increasing diversification of financial service supplied, it may difficult to use such a simple way isolated guard against risks. Second, because of the decentralized development trend of Fintech, financial risk also shows decentralization and honeycomb distribution features. The current top-down regulatory approach to existing financial institutions also faces unprecedented challenges. Third, the development of Fintech has led to a geometric growth in the scale and frequency of financial transaction, and data scale, business complexity, and diversity of risks faced by financial supervision have continued to rise. In the face of increasingly complex financial transaction behaviors, financial regulatory capabilities confronted with enormous challenges.

Regulations are doubled-edged swords, as they can either be catalyst to ensure a healthy market environment and encourage good behaviors, or barrier to constrain industry development. It is clear that Fintech regulations need to keep up with the market development. The key is to balance risk and innovation, Chinese regulators recognized the importance of well-balanced regulation.

4.5 Issues Faced by the Collaboration of Fintech Firms and Financial Institutions

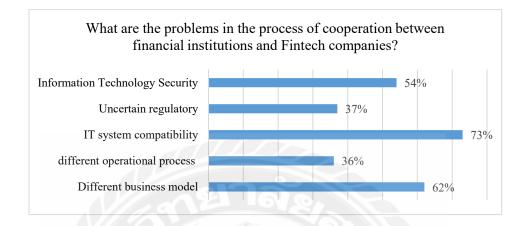


Chart 23

The collaboration between Fintech companies and financial companies is inevitable, however, some problems still existing in the cooperation process between the two parties. The results show on Chart 23 indicate that the top three issues were: IT system compatibility (73%), different business model (62%) between two parties and information technology security (54%). Since both two parties focus on different business areas in which they are located, there will be inevitable differences in business models. In the beginning, Fintech companies were mainly engaged in the development of science and technology or other fields. In contrast, finance was committed to traditional financial services. The IT systems of the two parties are not the same, therefore, IT system compatibility issues existing in the cooperation process cannot be avoided. In addition, the two parties must involve data exchange in the process of cooperation, and the possibility of information leakage in the process of data exchange will exist.

Source: author's questionnaire survey data

Chapter 5 Recommendation and Conclusion

5.1 Responding to Changes: Coming Together for the Common Good

The speed of technological advances means that falling to keep up with the market will lead in revenue and customer loss, or even being driven out of the industry. The questionnaire survey also highlights the growing importance of partnership, benefits and challenges facing in the Fintech era.

5.1.1 Strategies and Mindsets: Partnering to Innovate

How to innovate strategies and mindsets of Fintech companies and financial institutions? Chinese financial institutions mostly expect to strengthen thought internal efforts and through partnership with Fintech companies. Fintech acquisition is the third option cited. However, the high cost of acquisition and follow-up training and management of talents has deterred financial institutions. It means that financial institutions are more cautious about acquiring Fintech companies, and tend to strengthen internal innovation and cooperation.

5.1.2 Resource allocation: Focusing on Key Technologies.

Chinese financial institutions are dedicated to investing in emerging technologies. Chinese financial institutions are willing to allocate almost a third of annual turnover to Fintech-related projects, more than double the level of their global peers. Despite the investment enthusiasm, financial institutions will need a more thorough approach to assess innovative technologies (PwC, 2017). Focusing on emerging technologies globally will be necessary to fully understand the potential for description. The more invest in resource allocation come with higher expected return. Annual expected investment return rate of China's Fintech projects was higher than that of other countries and regions in the world, which was 20% higher than the global level (PwC 2016).

Therefore, it is also important to invest resources in key technologies and focus on management investment expectations. Through a questionnaire survey of financial institutions' preferences for key technologies in this paper, respondents tended to invest in the first three items are big data analysis, artificial intelligence, and public cloud Infrastructure. Thereby, resource allocation focusing on above key technologies is an inevitable trend for financial institution further development.

In addition, the pursuit of emerging technology by financial institutions needs to keep up with the pace of financial technology companies. At present, financial institutions are focusing on upgrading the financial system to improve compatibility with big data, information systems and mobile technology. Many financial institutions still remain in the stage of data integration and management to provide digital customer service experience. However, Fintech company has been focusing on updating the cutting-edge technology, the relevant solutions provided by them not only aims to improve the quality of customer service, also help to improve efficiency, reduce cost, to strengthen the security, make the process more agile.

5.1.3 Action Plan: Multiple Solutions to Collaborate

Collaboration is the general trend of financial technology. The business relationship between Chinese financial institutions and Fintech companies is mainly based on the "purchase of financial technology company services" to improve operations and services (PwC, 2017). Judging from the subjective strategy, they are willing to strengthen collaboration in the next three to five years. The cooperation modes between financial institutions and financial technology companies can be diversified. Apart from establishing partnerships, financial institutions can also provide services to Fintech companies, and even financial institutions can establish related venture capital funds to fuel the latter, or establish related projects to incubate Fintech companies. The key is to choose a win-win a mode that suits both parties. However, from the tactical level, there are several challenges faced by financial institutions and Fintech companies in cooperation with each other. The security of information technology and the uncertainty of supervision are the common challenges shared by both parties (CAITC, 2018b).

In addition, from a financial institution's point of view, the compatibility of information technology systems is a big challenge when they work together. For Fintech companies, the difference in business models between the two sides is also a problem. It can be seen that although the cooperation between the two parties obtain a subjective wish, the process still needs further adjustment.

5.3 Conclusion

The financial services industry is facing an unprecedented challenge brought about by Fintech development. Fintech reshapes the relationship between business and consumers by changing the way, time, and supply of financial services and products. Future success depends on financial institutions to improve the customer experience and ability to meet changing customer demand, this requires financial institutions to both strengthen the internal R&D and actively seek cooperation with Fintech companies.

The information about China's Fintech applied to the financial industry is scattered and ambiguous, which makes data integration challenging. Therefore, paying attention to the trends related to the development of the industry, technology and start-up companies is necessary. In order to cope with the ever-changing environment, many traditional financial institutions have tried to explore Fintech through various ways such as joint venture and cooperation with Fintech companies or strengthening independent research. No matter what method financial institutions applied, Fintech cannot be ignored.

The main impact from Fintech is the emergence of new financial services business models, which will pose challenges for supervisors and market participants. Financial services companies should no longer attempt to control all aspects of the value chain and customer experience through traditional business models. Instead, the core areas of Fintech development can be approached through using the trust relationship with customers and extensive access to customer data. For many traditional financial institutions, this approach requires a fundamental shift in identity and goals. The new form of Fintech will require companies to move from a single dimension of product promotion to a customer-centric model, where financial service providers are service enablers, help clients get advice and interact with all relevant participants through multiple channels.

The technological revolution in financial services is under way, but the impact on current banking players and financial system is not as well defined. Fintech disruption has the potential to shrink the role and relevance of today's financial institutions, and simultaneously help them create better, faster, cheaper services that make them an even more essential part of everyday life for institutions and individuals. Embracing openness and collaboration, and making smart investments is a good place to start.

REFERENCES

- Accenture. (2010). Banking on the Cloud. Retrieved November 15, 2017, from https://www.fi nextra.com/finextra-downloads/featuredocs/accenture banking cloud computing.pdf
- Alex. T., Don. T. (2017). How Block-chain is Changing Finance. Harvard Business Review. R etrieved May 10, 2018, from https://hbr.org/2017/03/how-blockchain-is-changing-fina nce
- Amazon. (2018). Big Data on AWS. Retrieved April 28, 2018, from https://aws.amazon.com/ big-data/
- Anil K.J., Ajay. K. (2010). Biometrics of Next Generation: An Overview. Retrieved May 12, 2 018, from https://pdfs.semanticscholar.org/6b68/66fbb4354e30ab34db9d6a8a07da4bf 25777.pdf
- Agatha. P. (2013). A Tale of Two Countries: OpenStack in China and India. Retrieved May 1
 5, 2018, from https://aptira.com/wp-content/uploads/2015/04/451-Research-Sept-2013
 -A-tale-of-two-countries-OpenStack-in-China-and-India.pdf
- Bogdan, N., Madalina, E., Ioan, F. T., Smaranda, E. T. & Alin, V. (2015). Cloud Computing a nd Its Challenges and Benefits in the Bank System. Database Systems Journal vol. VI, no. 1/2015.
- BCG. (2016). 人工智能:未来制胜之道. Retrieved November 22, 2017, from http://image-s rc.bcg.com/Images/BCG_Artificial-Intelligence_CHN_Oct2016_tcm9-156025.pdf
- Booth, Wayne (1995). The Craft of Research. Chicago, IL: The University of Chicago Press. I SBN 0226065650.

- BBVA Research. (June 2017).Fintech in Emerging ASEAN: Trends and Prospects. Retrieved September 10, 2017, from https://www.bbvaresearch.com/wp-content/uploads/2017/07 /June-2017-ASEAN-Fintech-Trends1.pdf
- Bruce. B., Ewa. D., Gideon. J., Mats. R., &Jens-S. V. (December 2012). The Application of C loud Computing to Scientific Workflows: A Study of Cost and Performance. Mathema tical, Physical and Engineering Science. Doi: 10.1098/rsta.2012.0066.
- China Internet Network Information Center. (2017). 第 40 次《中国互联网络发展状况统计报告. Retrieved November 15, 2017, from http://www.cac.gov.cn/2017-08/04/c_11214 27672.htm
- Coveo Solutions Inc. (n.d.). Guide to Mastering Intelligent Customer Service. Retrieved Nove mber 25, 2017, from https://www.coveo.com/en/resources/ebooks-white-papers/guideto-mastering-intelligent-customer-service
- CAICT. (2016). 云计算白皮书. Retrieved November 15, 2017, from http://www.cac.gov.cn/f iles/pdf/baipishu/cloudcomputing2016.pdf
- CAICT. (2017). 云计算关键行业应用报告. Retrieved January 1 2018, from http://www.caic t.ac.cn/kxyj/qwfb/ztbg/201709/P020170919495715535738.pdf
- CAICT. (2018a). 中国金融科技产业生态分析报告. Retrieved January 1, 2018, from http://www.caict.ac.cn/kxyj/qwfb/ztbg/201801/P020180116489009759967.pdf
- CAICT. (2018b). 中国金融科技前沿技术发展趋势 及应用场景研究. Retrieved January 1, 2018, from http://www.caict.ac.cn/kxyj/qwfb/ztbg/201801/P020180116491991162222. pdf

- Cisco. (2016). Cisco Global Cloud Index: Forecast and Methodology 2015-2020. Retrieved Fe bruary 20, 2018, from https://www.cisco.com/c/dam/m/zh_cn/solutions/service-provid er/sp_gciwhitepaper_whitepaper_cn.pdf
- Coresight Research. (2016). Deep Dive: Mobile Payments in China. Retrieved May 12, 2018, from https://www.fungglobalretailtech.com/research/deep-dive-mobile-payments-chin a/
- Desai. F (2015, December). The Evolution of Fintech. Forbes Asia Magazine. Retrieved Octob er 5, 2017, from https://www.forbes.com/sites/falgunidesai/2015/12/13/the-evolution-o f-fintech/#10d506d87175
- Denzin, Norman K.; Lincoln, Yvonna S., eds. (2005). The Sage Handbook of Qualitative Rese arch (3rd Ed.). Thousand Oaks, CA: Sage. ISBN 0-7619-2757-3.
- Douglas W. Arner. (2016). Fintech: Evolution and Regulation. Retrieved October 10, 2017, fr om http://law.unimelb.edu.au/__data/assets/pdf_file/0011/1978256/D-Arner-FinTech-Evolution-Melbourne-June-2016.pdf
- Daniel. D. Gutierrez. (n.d.). Big Data for Finance. Retrieved April 28, 2018, from https://www. whitepapers.em360tech.com/wp-content/uploads/1427803213insideBIGDATAGuidet oBigDataforFinance.pdf
- Deloitte. (2016). Why Artificial Intelligence Is a Game Changer for Risk Management. Retrie ved December 5, 2017, from https://www2.deloitte.com/content/dam/Deloitte/us/Docu ments/audit/us-ai-risk-powers-performance.pdf

- Douglas W. A., Jànos B., & Ross P. B. (2017). Fintech and Regtech in a Nutshell, and the Fut ure in a Sandbox. Retrieved May 9, 2018, from https://www.cfapubs.org/doi/full/10.24 70/rfbr.v3.n4.1
- Daniel. F., Mark. L., Tim. R. (2015). A Tale of Twin Tech: Bitcoin and the Www. Retrieved May 12, 2018, from https://www.a51.nl/sites/default/files/pdf/SSRN-id2601617.pdf
- Darin, C., Marianne, C., Cynthia, M., Richard, O. & Steve, M. (March 25, 2011). Mobile Pay ments in the United States Mapping Out the Road Ahead. Retrieved May 12, 2018, fro m https://www.bostonfed.org/publications/mobile-payments-industry-workgroup/mobi le-payments-in-the-united-states-mapping-out-the-road-ahead.aspx
- David. L. (2010). Technology Innovation Management Review: The Value of Cloud Computing. Retrieved April 28, 2018, from https://timreview.ca/article/339
- Darrell M. W. (2015). What Happens If Robots Take the Jobs? The Impact of Emerging Tech nologies on Employment and Public Policy. Retrieved May 15, 2018, from https://www.brookings.edu/wp-content/uploads/2016/06/robotwork.pdf
- Darrell M. W. (2015). What Happens If Robots Take the Jobs? The Impact of Emerging Tech nologies on Employment and Public Policy. Retrieved May 15, 2018, from https://www.brookings.edu/wp-content/uploads/2016/06/robotwork.pdf
- FATF. (2013). Guidance for A Risk-based Approach: Prepaid Cards, Mobile Payments and In ternet-based Payment Services. Inter-governmental Report. Retrieved May 12, 2018, fr om https://www.fms.gov.ge/Uploads/Publications/10/Guidance_RBA_NPPS_June_20 13.pdf

- Fred. W. (2010). Cloud Computing: What is it, and How Will it Affect Organizations? Retriev ed April 28, 2018, from https://timreview.ca/article/340
- Eduardo. C. F. (Jun 25, 2017). The Block-chain: A New Framework for Robotic Swarm Syste ms. Retrieved May 12, 2018, from https://arxiv.org/pdf/1608.00695.pdf
- Given, L. M. (Ed.) 2008. The Sage Encyclopedia of Qualitative Research Methods. Sage Publications.
- Hsinchun. C., Roger. H. L. C. & Veda. C. S. (2012). Business Intelligent and Analytics: From Big Data to Big Impact. MIS Quarterly Vol. 36 No. 4/December 2012. Retrieved May 15, 2018, from https://ai.arizona.edu/sites/ai/files/MIS611D/chen-bi-december-2012.p df
- Harland Clarke. (2010). Two Trends Now Sharping Financial Institutions. An Industry Magaz ine for Clients of Harland Clarke. Retrieved May 9, 2018, from https://www.harlandcl arke.com/dv/1007/01.php
- IBM. (2013). Cloud Computing for Banking. Retrieved February 25, 2018, from https://www-935.ibm.com/services/multimedia/Cloud_Computing_for_Banking_Janvier_2013.pd f
- IRsearch. (2017). 中国金融科技发展报告 2017. Retrieved September 20, 2017, from http://report.iresearch.cn/wx/report.aspx?id=2966
- Ian Pattison. (2017). 4 Characteristics That Set Block-chain Apart. Retrieved November 20, 2017, from https://www.ibm.com/blogs/cloud-computing/2017/04/11/characteristicsblockchain/

- Javier, A. P., Fani, D., Daniele, R. & Guangzhong, Y. (2018). Artificial Intelligence and Robo tics. Retrieved May 15, 2018, from https://arxiv.org/ftp/arxiv/papers/1803/1803.10813. pdf
- Jonathan. W. L. (2016). Robo-Advisors: A Portfolio Management Perspective. Retrieved May 15, 2018, from https://economics.yale.edu/sites/default/files/files/Undergraduate/Nom inated%20Senior%20Essays/2015-16/Jonathan_Lam_Senior%20Essay%20Revised.pd f
- John, M. K. (1920).*The Economic Consequences of the Peace*.2nded. New York: Harcourt, Bra ce, and Howe, Inc.
- Jo Lang. (2017). Three Uses for Block Chain in Banking. Retrieved November 22, 2017, from https://www.ibm.com/blogs/blockchain/2017/10/three-uses-for-blockchain-in-banking/
- Jin .H. (March 21, 2017). How Mobile Payment Is Changing the World. Retrieved May 10, 20 18, from https://digitalcommons.wou.edu/cgi/viewcontent.cgi?article=1002&context= computerscience_studentpubs
- Johannes. S. U. C. (December 17, 2012). Toward A Ubiquitous Mobile Payment Solution: Ex pending NFC Mobile Payment Business Models-A Case Study on Google Wallet and I SIS. Retrieved May 12, 2018, from http://studenttheses.cbs.dk/bitstream/handle/10417 /3848/johannes_sang_un_chae.pdf
- Jan. O., Yves. P. (Jan 2005). A Disruption Analysis in the Mobile Payment Market. 38th Annu al Hawaii International Conference on System Sciences (HICSS'05), IEEE Computer Society, 3-6 Jan 2005, Hawaii, USA.

- Jeanne. L. (2016). More Banks Turn to Biometrics to Keep an Eye on Security. Retrieved May 12, 2018, from https://www.nerdwallet.com/blog/banking/biometrics-when-your-bank -scans-your-voice-face-or-eyes/
- Jyotsana. G. (December 2013). Design of Improved Algorithm for Mobile Payments Using Bi ometrics. Retrieved May 12, 2018, from http://www.gyanvihar.org/centrallibrary/hous eofwisdom/COMPUTER%20SC/Design%20of%20Improved%20Algorithm%20For% 20Mobile%20Payments%20Using%20Biometrics.pdf
- Kathleen, J, Syed (Shawon) M. R. (2011). Cloud Computing Avoid Downfall of Application S ervice Providers. Retrieved May 15, 2018, from https://arxiv.org/ftp/arxiv/papers/1512 /1512.00061.pdf
- Katharina. C. H., Tobias. K. & Thomas.S. (2016). Cloud adaptiveness within industry sectors Measurement and observations. Telecommunications Policy. Volume 40, Issue 4, Apr il 2016, Pages 291-306.
- KPMG. (2017). Fintech 100: Leading Global Fintech Investors. Retrieved March 10, 2018, fro m https://home.kpmg.com/content/dam/kpmg/it/pdf/2018/03/H2-Fintech-Innovators-2 017.pdf
- Konsbruck R. L. (n.d.). Impacts of Information Technology on Society in the new Century. Re trieved May 9, 2018, from https://www.zurich.ibm.com/pdf/news/Konsbruck.pdf
- Kathryn. M. (2010). Building Innovation: Learning With Technologies. Australian Council for Educational Research. Retrieved May 10, 2018, from https://research.acer.edu.au/cgi/ viewcontent.cgi?referer=https://www.google.co.th/&httpsredir=1&article=1009&cont ext=aer

- Luca. M. (2016). ICT Value Chain: the Impact of the Cloud Computing Paradigm on Competi tive Dynamics. Retrieved May 15, 2018, from https://www.politesi.polimi.it/bitstream/ 10589/131142/1/2016_12_Millefanti.pdf
- Leigh. A. R., Joseph. M., Matthew. S. & James. M. (2013). Red Cloud Rising: Cloud Computi ng in China. Retrieved May 15, 2018, from https://www.uscc.gov/sites/default/files/Re search/DGI_Red%20Cloud%20Rising_2014.pdf
- Li, W. (September 18, 2009). Licensing and Retained Funds Regulation of Internet Third Part y Payment Providers in China. Journal of Information, Law & Technology (JILT), 200 9(2).
- Michael. H., Fang. L., Annie. S. & Jin. T. (2011). NIST Cloud Computing Standards Roadma p. Retrieved May 15, 2018, from https://www.nist.gov/sites/default/files/documents/itl /cloud/NIST_SP-500-291_Jul5A.pdf
- Mircea. G., Victor. J. (2013). 7th International Conference on Globalization and Higher Educa tion in Economics and Business Administration, GEBA 2013: The particularity of the banking information system. Procedia Economics and Finance 20 (2015) 268 – 276.
- Mitch. S. (January 3, 2018). Crypto Currency & Block-chain Technology: A Decentralized Fu ture. RBC Capital Market Equity Research. Retrieved May 15, 2018, from https://ca.rb cwealthmanagement.com/documents/616937/616953/Crypto+Currency+%2B%20Blo ckchain+-+RBC+-+2018+01+03.pdf/6f959d80-b77b-43c4-80cb-38e1187793a1
- Marco. I., Karim. R. L. (2017). The Truth about Block-chain. Harvard Business Review. Retri eved May 15, 2018, from https://hbr.org/2017/01/the-truth-about-blockchain

- Mancy. S., Piyush. M., Tian. L., Stanley. T. (August 7, 2017). Future of Finance: The Rise of China Fintech. Goldman Sachs (Asia) Equity Research. Retrieved November 7, 2017, from http://hybg.cebnet.com.cn/upload/gaoshengfintech.pdf
- Marianne. C., Marc. R., Joanna. S. (May 17, 2010). Mobile Payments in the United State at Re tail Point of Sale: Current Market and Future Prospects. Retrieved May 12, 2018, from https://www.bostonfed.org/publications/public-policy-discussion-paper/2010/mobile-payments-in-the-united-states-at-retail-point-of-sale-current-market-and-future-prospe cts.aspx
- Michael. E., Ramana. N., Matthew. R.K. (2015). Cost of Experimentation and the Evolution o f Venture Capital. Retrieved April 28, 2018, from http://www.hbs.edu/faculty/Publicat ion%20Files/15-070_ce69055e-1e3a-4647-96c2-37e474f48914.pdf
- Minakshi. B., Chander. K. (2015). Load Balancing in Cloud Computing. Retrieved April 28, 2 018, from https://pdfs.semanticscholar.org/934b/2eb6742f8703c0ed75ddc9366cc2d6c 51d4d.pdf
- Narayanan, Arvind; Bonneau, Joseph; Felten, Edward; Miller, Andrew; Goldfeder, Steven (20
 16). Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeto
 n: Princeton University Press. ISBN 978-0-691-17169-2.
- Narayanan. (2018). A Brief History in The Evolution of Block-chain Technology Platforms. R etrieved April 28, 2018, from https://hackernoon.com/a-brief-history-in-the-evolutionof-blockchain-technology-platforms-1bb2bad8960a

- Norman. D. (2017). The ROI of Private Cloud: Reducing Outsourced Operations Management Costs. Retrieved April 28, 2018, from https://infocus.dellemc.com/norman-dee/private -cloud-reducing-outsourced-costs/
- Naidila. S., Dilip. K. (Auguest 2011). The 6th International Conference on Computer Science & Education (ICCSE 2011): Cluster, Grid and Cloud Computing: A Detailed Compari son. Retrieved April 28, 2018, from http://citeseerx.ist.psu.edu/viewdoc/download?doi =10.1.1.465.8919&rep=rep1&type=pdf
- Oracle. (n.d.). What Is Big Data? Retrieved November 18, 2017, from https://www.oracle.com /big-data/guide/what-is-big-data.html
- PwC. (2016). 技术制胜,场景为王--拥抱移动支付新浪潮. Retrieved November 15, 2017, fro m https://www.pwccn.com/en/financial-services/fs-mobile-payment-may2016.pdf
- PwC. (2017).Global Fintech Survey China Summary 2017. Retrieved October 5, 2017, from h ttps://www.pwccn.com/en/financial-services/publications/fintech/global-fintech-surve y-china-summary-jun2017.pdf
- Paul. S., Gavin. L. (2017). Fintech Is Merging with IOT and AI to Challenge Banks: How Entr enched Interests Can Prepare. The Journal of Alternative Investments Winter 2018, 20 (3) 41-57; DOI: https://doi.org/10.3905/jai.2018.20.3.041.
- Reuben J. (2018, March 17). AI and Block-chain Tech Are the Future of Successful Trading. Retrieved May 9, 2018, from https://readwrite.com/2018/03/17/ai-blockchain-tech-fut ure-successful-trading/

- Robert. W. (June 2002). Banking on the Technology: Expanding Financial Market and Econo my Opportunity. Retrieved May 12, 2018, from https://www.brookings.edu/wp-conten t/uploads/2016/06/weissbourdopp.pdf
- Reinhardt. K. (July 28, 2017). Is the Holy Grail of Digital Payments Just One Click Away? Re trieved May 12, 2018, from https://www.investors.com/news/technology/digital-paym ent-fight-draws-apple-amazon-paypal-square-visa/
- Radhika V.B. (2009). Biometric Identification System: Feature Level Clustering Large Biometric Data and DWT Based Hash Coded Ear Biometric System. Retrieved May 12, 201
 8, from https://www.researchgate.net/profile/James_Peters/...in_Pattern.../biometrics.pdf
- Rob. S., Krish. R. (2015). An Open, Trusted Platform for Your Private Cloud. Retrieved April 28, 2018, from https://www.intel.com/content/dam/www/public/us/en/documents/whi te-papers/openstack-cloud-platform-paper.pdf
- Salla. P. (2017). Opportunities of Big Data Analytics in Supply Market Intelligence to Reinfor ce Supply Management. Retrieved May 15, 2018, from https://www.doria.fi/bitstream/ handle/10024/135246/Masters Thesis Paajanen Salla.pdf?sequence=2
- Sharma. A. (February 2012). Data Management and Deployment of Cloud Applications in Fin ancial Institutions and its Adoption Challenges. International Journal of Scientific & T echnology Research Volume 1, Issue 1, Feb 2012.

- Suresh. S. R. M. (2014).Transformation Potential of Cloud Computing- Understanding Strateg ic Value Creation form Customer and Vendor Perspectives. Retrieved May 15, 2018, f rom https://deepblue.lib.umich.edu/bitstream/handle/2027.42/110393/sureshms_1.pdf; sequence=1
- Scott. S., Marianne. C., Joanna. S. (2006). Consumer Behavior and Payment Choice: A Confer ence Summary. Retrieved May 12, 2018, from https://www.econstor.eu/obitstream/104 19/59235/1/514865156.pdf
- Saunders, M., Lewis, P. & Thornhill, A. (2012) "Research Methods for Business Students" 6th edition, Pearson Education Limited
- Sanicola, Lenny (2017). "What is FinTech?" Huffington Post.
- Sudhakar. K, Vinay Kumar.G, Sudha Rani. L. (2014). A View on Cloud Computing in the Ba nking Sector. International Journal of Computer Science and Information Technologie s, Vol. 5 (3), 2014, 3305 – 3308.
- Thomas F. D. (November 11, 2014). Fintech The digital (r) evolution-in the financial sector. Deutsche Bank Research. Retrieved May 10, 2018, from https://www.deutschebank.nl /nl/docs/Fintech-The_digital_revolution_in_the_financial_sector.pdf
- Tianyu M. F. (Mar 16, 2018). Why OR Codes Trump NFC in China? Retrieved May 12, 2018, from https://technode.com/2018/03/16/qr-codes-nfc-china/
- Xingnan. W, Rui. H. (2017). FinTech in China's Capital Market. Retrieved November 15, 201
 7, from http://www.nomurafoundation.or.jp/en/wordpress/wp-content/uploads/2017/09
 /NJACM2-1AU17-03 CHINA.pdf

- Xiao. L. (2016). The Innovation of Regulation in the Internet Finance Industry of China. Retri eved May 15, 2018, from http://tesi.eprints.luiss.it/17230/1/679701_LIANG_XIAO.pd f
- Yuetao. W., Weizhou. Z. (2014). Research on Mobile Payment Based on Connection of NFC and SIM Card. The Journal of Biotechnology. BTAIJ, 10(19), 2014 [11590-11594].

Appendix

Questionnaire Survey on the Development and Application of Fintech in China

In order to learn more about the development of China's Fintech and its application in the financial field, the purpose of this questionnaire is to obtain the relevant research data and complete the graduation thesis related to the development of Fintech through Questionnaire survey. This questionnaire is composed of single selection and multiple selection, and you can choose the right answer in the option. This survey takes the form of bearer, thank you very much for your participation.

- 1. What's your gender?
- O Male
- Female
- O Others
- 2. What is your age?
- O18-25 years old
- \bigcirc 26-30 years old
- \bigcirc 31-35 years old
- \bigcirc 36-40 years old
- \bigcirc 40 years old
- 3. What is your degree?
- \bigcirc Junior or below

○ High School

O Bachelor Degree

- O Master or above
- 4. When was the first time you heard about the relevant information about Fintech in China?

 \bigcirc 2-3 0 year ago

- Year ago
- Half a year before
- \bigcirc Six months before

 \bigcirc Have not heard

5. Have you ever learned about the development of Fintech abroad? When was the first time you knew?

- \circ 5 years ago
- 3 years ago
- ^OWithin 3 years
- \bigcirc have not heard
- 6. What do you know about financial technology?
- ^OThe combination of finance and technology
- ^O Finance services technology, emphasis on technology
- ^O Technology Service finance, heavy in finance
- Not sure, just heard it.

7. What exactly do you know about Fintech? [Multiple selection]

- Big data finance
- O Block chain
- Cloud computing
- Artificial intelligence
- \bigcirc Other
- 8. How much do you know about the specific technologies mentioned above?
- Basic understanding of block-chain technology theory knowledge
- \bigcirc Basic understanding of big data financial theory knowledge
- \bigcirc Basic knowledge of cloud service theory
- Basic knowledge of the theoretical knowledge of several types of technology
- OHave done the application of the above technology(one or several technologies)
- Don't know or have applied

9. Which business areas do you think block-chain technology has the most application value? [Multi-choice]

- \bigcirc Transaction settlement
- O Digital Identity Management
- Payment infrastructure
- Fund transfer infrastructure
- \bigcirc Securitization

○ Regulatory Compliance and Auditing

○ Trade Financing

 \bigcirc Insurance

10. How long do you think financial technology will really change the lives of most people in the coming years?

 \bigcirc Now the impact is great

 \bigcirc 5 years

 \bigcirc 3-5 years

 \bigcirc Within 3 years

O Will not change, and there is no potential for development

11. What areas have you learned about the Fintech-related technologies that have been applied?

[Multi-choice]

 \bigcirc Financial Sector

 \bigcirc Medical field

 \bigcirc Education

OTransportation

OE-commerce area

12. What is the main application of Fintech in the financial industry? [Multi-choice]

○ Payment clearing

○ Risk Control

- Intelligent Marketing
- Intelligent customer service
- \bigcirc Credit information
- 13. What opportunities have been brought to the industry by financial technology? [Multi-choice]
- Expand product and service scope
- \bigcirc Broaden customer base
- \bigcirc Better analyze and leverage existing data
- Respond faster to competitors
- Reduce labor costs
- 14 What challenges have the financial technology brought to the industry? [Multi-choice]
- \bigcirc Increase customer loss
- Increase investment in information technology
- \bigcirc Loss of market share
- \bigcirc Fierce price war
- Internet Information Security / Privacy Threats
- Legal/Compliance Risk
- 15. Which entities are likely to be the most disruptive in the next 5 years in China? [Multi-choice]
- OE-commerce platform
- Financial infrastructure operators
- Information and communications technology operators, large technology companies

 \bigcirc Startup company

 \bigcirc Traditional financial institutions

16. In the next five years, what areas of the financial industry are most likely to be subverted by financial technology? [Multi-choice]

O Retail Banking

○ Investment and Wealth Management

 \bigcirc Fund transfer and payment

○ Corporate Banking (including SME Bank)

 \bigcirc Fund operator

17. What service areas in the financial industry are most likely to flow to independent Fintech companies in the next five years? [Multi-choice]

O Payment

- \bigcirc Personal loan
- $\, \odot \,$ Fund transfer
- Personal Finance
- \bigcirc Traditional deposit/saving account
- Wealth Management
- Student loans

18. How will the innovation drive of financial institutions change over the next five years?

○ Strengthen internal R&D

OCooperation with financial technology companies

○ Acquisition of financial technology companies

○ Maintain the status quo unchanged

19. Which of the following new technologies will financial institutions invest in over the next five

years? [Multi-choice]

O Big data analysis

○ Artificial intelligence

 \bigcirc Mobile Technology

○ Robot Process Automation

○ Distributed ledger technology (such as block-chain)

○ Network Information Security

○ Public cloud infrastructure

- O Biometrics and Identity Management
- \bigcirc Internet of things

20. What are the problems in the process of cooperation between financial institutions and financial technology companies? [Multi-choice]

 \bigcirc Differences in business models

○ Differences in operational processes

○ Information Technology System Compatibility

○ Information Technology Security

○ Regulatory uncertainty

21. What do you think is the biggest problem in the development of China's financial science and technology?

 \bigcirc Regulation is not yet perfect

○ Public approval degree is not high

○ Market technology monopoly

OTechnology is in development

• Potential hidden dangers, such as the leakage of personal privacy and the use of techniques that are easy to grasp.

22. In what ways has regulation hindered innovation in financial technology? [Multi-choice]

O Electronic Currency / Encrypted Digital Currency

○ New business model (such as: crowdfunding, online loans, etc.)

 \bigcirc Use of new technologies

 \bigcirc Digital identity authentication

O Anti-Money Laundering (AML) and KYC

23. Do you think that the level of development of relevant technologies will affect the development of Fintech?

○ Meeting

 \bigcirc Will not affect

 \bigcirc Not clear.

24. Do you think that financial supervision influences the development of Fintech?

○ Meeting

 \bigcirc Will not affect

 \bigcirc Not clear.

25. What are your suggestions for the supervision of domestic financial technology? [Fill in the blank]