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Abstract: This study focuses on the impacts of climate change on rainfall erosivity in the Huai
Luang watershed, Thailand. The multivariate climate models (IPCC AR5) consisting of CCSM4,
CSIRO-MK3.6.0 and MRI-CGCM3 under RCP4.5 and RCP8.5 emission scenarios are analyzed.
The Quantile mapping method is used as a downscaling technique to generate future precipitation
scenarios which enable the estimation of future rainfall erosivity under possible changes in climatic
conditions. The relationship between monthly precipitation and rainfall erosivity is used to estimate
monthly rainfall erosivity under future climate scenarios. The assessment compared values of
rainfall erosivity during 1982–2005 with future timescales (i.e., the 2030s, 2050s, 2070s and 2090s).
The results indicate that the average of each General Circulation Model (GCM) combination shows
a rise in the average annual rainfall erosivity for all four future time scales, as compared to the
baseline of 8302 MJ mm ha−1 h−1 year−1, by 12% in 2030s, 24% in 2050s, 43% in 2070s and 41% in
2090s. The magnitude of change varies, depending on the GCMs (CCSM4, CSIRO-MK3.6.0, and
MRI-CGCM3) and RCPs with the largest change being 82.6% (15,159 MJ mm ha−1 h−1 year−1)
occurring under the MRI-CGCM3 RCP8.5 scenario in 2090s. A decrease in rainfall erosivity has been
found, in comparison to the baseline by 2.3% (8114 MJ mm ha−1 h−1 year−1) for the CCSM4 RCP4.5
scenario in 2030s and 2.6% (8088 MJ mm ha−1 h−1 year−1) for the 2050s period. However, this could
be considered uncertain for future rainfall erosivity estimation due to different GCMs. The results
of this study are expected to help development planners and decision makers while planning and
implementing suitable soil erosion and deposition control plans to adapt climate change in the Huai
Luang watershed.
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1. Introduction

Rainfall erosivity (R factor) represents a measure of the erosive force of rain or its potential to
cause soil erosion. The R factor of the Revised Universal Soil Loss Equation (RUSLE) [1] is a useful
tool for identifying areas with high soil loss potential and thereby determining area specific soil
conservation structures. The R factor quantifies the impact of rainfall and reflects the amount and
rate of runoff that can be associated with soil erosion. The rainfall erosivity for a given storm as per
USLE [2] or its revised version, RUSLE [1] is equal to the product of the total storm energy (E) and the
maximum 30-min rainfall intensity (I30). However, the use of EI30 alone is not sufficient to describe
the relative rainfall erosivity [3]. Moreover, it requires continuously recorded rainfall data which is
not commonly available in remote areas. Thus, an index based on kinetic and momentum of run-off
can also be used to estimate the monthly or annual values of rainfall erosivity with accurate record
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usually available for an extended period. Till date, many indices which relate the erosivity to soil
loss estimation have been established (such as Diodato, et al. 2004 [4], Diodato and Bellochi 2007 [5],
Angulo-Martínez et al. 2009 [6], Hernando and Romana 2015 [7]). However, most of the studies have
application to a particular geographical location and area. The most widely used index is the Fournier
index [8]. It has been found to have a good relationship with annual values of rainfall erosivity.
However, this Fournier index has shortcomings and subsequently modified into Modified Fournier
Index (MFI) [9]. This modified index is summed for a whole year and found to be linearly correlated
with EI30 index of the USLE [10].

Global changes in precipitation and temperature patterns are expected to impact soil erosion
through multiple pathways, including changes in rainfall erosivity [11]. Climate change is expected to
affect soil erosion based on a variety of factors, including precipitation amounts and intensities,
temperature impact on soil moisture and plant growth [12]. The erosive power of rainfall has
a direct effect on soil loss. Current general circulation models (GCMs) and regional climate models
(RCMs) [13,14] cannot provide detailed precipitation information that enables the determination of
the extent of rainfall erosivity directly as a function of rainfall kinetic energy and rainfall intensity.
Climate change is expected to impact soil erosion based on factors like precipitation amount, the impact
of precipitation intensity on soil moisture and plant growth [15]. The most direct effect of climate
change on erosion by water can be expected to be the effect of changes in rainfall erosivity [16–19].
Thus, an increase in soil erosion can be expected due to the increase in rainfall erosivity. Table 1 shows
earlier studies projecting impacts of climate change on rainfall erosivity [19–23]. Climate change is
expected to affect soil erosion based on a variety of factors [24] including changes in precipitation
amount and intensity, impacts on soil moisture and plant growth, etc. Several studies have also shown
that climate change could significantly affect soil erosion (as shown in Table 2) [19,20,25,26]. One of the
direct impacts of climate change on soil erosion is the change in the erosive power of rainfall [23–25].
The contribution of water as an eroding agent can be represented by rainfall erosivity (R-factor).
This factor is important and dominant in the Universal Soil Loss Equation (USLE) and the Revised
Universal Soil Loss Equation (RUSLE). Both USLE and RUSLE are sets of mathematical equations that
estimate average annual soil loss from interrill and rill erosion [27].

Zhang et al. (2010) [20] have illustrated that the projected increases in future rainfall erosivity
forewarn important trends of soil loss and runoff in the northeastern China. Based on the USLE or
RUSLE estimates, a 1% increase in rainfall erosivity will cause a 1% increase in soil loss assuming
other factors related to crops, management, and conservation practices remain the same. The expected
increase in erosivity will impose more pressure on the land resources and may have a significant
negative impact on agricultural production. The study highlights the need to design, plan and
implement soil conservation practices to combat potentially severe soil erosion in this region under
climate change.

Panagos et al. (2015) [28] have recommended that rainfall erosivity equations should be used with
caution in various applications. The rainfall erosivity empirical relationships developed are location
specific and, in most cases, those relationships cannot be applied to other regions or over larger areas
(Panagos et al., 2015, Oliveira et al., 2013) [29,30]. Also, empirical equations cannot capture the impact
of high rainfall intensities on the average rainfall erosivity. Prassanakumar et al. (2009) [30] suggest that
information on soil erosion on a sub-watershed scale contributes significantly to the planning for soil
conservation, erosion control, and management of the watershed environment. In this background, it is
important to develop a relationship between rainfall and erosivity at specific locations or the watershed
level using available data. The present study aims to establish an empirical relationship between
rainfall and erosivity using observed rainfall data and based on estimated empirical relationship,
to estimate the future rainfall erosivity under the influence of climate change at the local scale (the Huai
Luang watershed located in the northeastern Thailand). The outcomes of this study are expected to be
useful to policy makers to plan various soil erosion control practices in the watershed.
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Table 1. Previous studies about impacts of climate change on rainfall erosivity.

Authors Study area and Location Climate Models Climate Scenarios Baseline Period Projected Period Projected Change in
Precipitation (%)

Projected Change in
Rainfall Erosivity (%)

Zhang et al.,
2010 [20] Northeast of China

CGCM3.1 (T47)
CGCM3.1 (T63)
CSIRO-MK3.0

UKMO-HadCM3
UKMO-HadGEM1

ECHAM5/MPI-OM

A2, A1B, B1 1960–1999 2030–2059
2070–2099

+13.33
+21.33

+54.33
+73.66

Shiono et al.,
2013 [21] Hokkaido Island, Japan RCM20 A2 1995–2009 2031–2050

2081–2100
+30
+8

+26
+23

Plangoen et al.,
2014 [10]

Upper Nan
Watershed, Thailand

PRECIS:
ECHAM4, GFDLR-30,
HadCM3 and CCSM3

A2,B2,A1B, B1 1971–2000

2011–2040 +2.14 +5.02

2041–2070 +5.19 +10.32

2071–2099 +7.00 +14.20

Hoomehr et al.,
2016 [22]

Southern Appalachian
region, USA CCSM A1FI, A1B, B1 1959–2000 2010–2099 +3 to +12 +7 to +19

Panagos et al.,
2017 [23] EUROPE HadGEM2 RCP4.5 2010s 2050s - −23.9 to 78.2

Table 2. Previous studies of impacts of projected climate change on soil erosion in Asian case using RUSLE and USLE.

Year Author(s) Country/Region Erosion Models Climate Models Climate Scenarios

2010 Zhang et al. [20] Northeast China RUSLE
CGCM3.1 (T47),CGCM3.1 (T63),
CSIRO-MK3.0, UKMO-Hadcm3,

UKMO-HadGEM1, ECHAM5/MPI-OM
A2, A1B, B1

2011 Park et al. [25] All land areas of Korea RUSLE Mesoscale Model Version 5 A1B

2013 Plangoen et al. [19] Mae Nam Nan sub-catchment,
Thailand RUSLE CCSM3 HadCM3

PRECIS RCM A2, A1B, B1

2015 Mondal et al. [26] Narmada River Basin, India USLE HADCM3 A2
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Deforestation has been steadily occurring over the past century due to an increase in the area
under upland crop cultivation in northeastern Thailand [31] (LDD, 2005). There was an increase in
the cultivation of cash crops such as cassava, sugarcane and maize and this cultivation expanded
to the highlands of the Huai Luang watershed. Due to deforestation, intensive land uses and the
topography, soil erosion has become a major environmental problem in the Huai Luang watershed.
Soil erosion affects crop productivity and soil fertility, both of which are leading to lower incomes
for farmers and insufficient food production for the ethnic minority populations in the study area.
The rate of soil erosion in the northeast Thailand, on an average, is higher than 150 ton ha−1 year−1 [31]
(LDD, 2005). Soil erosion leads not only to long-term losses in crop productivity but also causes
a reduction in the storage capacity of reservoirs, which in turn leads to increased flooding and reduced
irrigation capacity downstream. For the past few decades, encroachment of agricultural activities
on forest areas and the misuse of land have become serious problems in the Huai Luang watershed.
Thailand Research Fund (TRF) initiated a climate change research program and provided funding to
support the development of climate change scenarios in the northeast Thailand to use in subsequent
impact assessments studies [32]. Most of the 8 GCMs (CCMA CGCM3.1, MPI _ECHAM5, GISS,
CNRM_CM3, CSIRO_MK3.0, CSIRO_MK3.5, IPSL_CM4, and GFDL_CM2.0) show that the average
monthly maximum temperature in northeast Thailand is expected to increase by 3 ◦C–4 ◦C and the
average monthly minimum temperature is expected to increase by over 4 ◦C throughout the country.
Also, the Northeastern plateau tends to have unchanged annual precipitation, with the potential for
slightly higher precipitation during the dry season and slightly lower precipitation during the late part
of the rainy season.

2. Materials and Methods

2.1. Materials

2.1.1. Study Area

The Huai Luang watershed is located in Udon Thani province of the northeast Thailand (Figure 1).
The watershed covers about 3428 km2 area with the highest elevation of 567 meters above mean sea
level (m amsl) (elevation range of 631–153 m amsl). The main river—The Huai Luang—is a tributary of
the Mekong River. The watershed has hilly and rolling hill topography in the south and north regions,
pen plain morphology at the central to northeast side and along the Huai Luang River with the low
elevation of 87 m amsl. The land use land cover (LULC) map is modified from the map constructed
by the Land Development Department [33]. Nine classes of LULC are mapped as follows: orchard,
cassava, maize, forest, paddy field, pasture, sugarcane, urban, and water body (Figure 1). Paddy field
occupies about 40% of the area. The orchard is grown in the northwest to southwest regions covering
an area of about 9%. Water bodies, urban area, and forest area covers about 5%, 8% and 17% of the
watershed area, respectively.
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(Pp), Bua Lai (Bli), Dan Sai (Ds), Lam Thamenchai (Ltc), and Chakkarat (Ckr) [34]. The Ds series 
covers a relatively large area of the watershed (about 23.94%). The soil series are characterized based 
on their saturated hydraulic conductivity values into three groups, namely, slow, moderate, and rapid 
soils. The slow soils (Pp, Nbn) are soils having very less infiltration rates (<5 × 10−7 m/s), mainly consist of 
clay soils, silty clay soil over nearly impervious material. The moderate soils (Bli, Ds, Ckr) are soils 
having moderate infiltration rates (5 × 10−7 to 5 × 10−6 m/s), moderately well-drained soils with fine to 
moderately fine textures such as loam, sandy clay loam. The rapid soils (Png, Ltc) are soils having high 
infiltration rates (>5 × 10−6 m/s) are excessively well-drained such as loamy sand and sand. About 52% of 
the Huai Luang watershed area is covered with moderately infiltrated soil series type (Figure 2). 
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Figure 2. (a) Soil series and (b) location of rain gauge stations in the Huai Luang Watershed. 

Figure 1. Location of the Huai Luang watershed.

2.1.2. Soil Series

The major soil series in the watershed is Nong Bunnak (Nbn), Phon Ngam (Png), Phon Phisai (Pp), Bua
Lai (Bli), Dan Sai (Ds), Lam Thamenchai (Ltc), and Chakkarat (Ckr) [34]. The Ds series covers a relatively
large area of the watershed (about 23.94%). The soil series are characterized based on their saturated
hydraulic conductivity values into three groups, namely, slow, moderate, and rapid soils. The slow soils
(Pp, Nbn) are soils having very less infiltration rates (<5 × 10−7 m/s), mainly consist of clay soils, silty
clay soil over nearly impervious material. The moderate soils (Bli, Ds, Ckr) are soils having moderate
infiltration rates (5 × 10−7 to 5 × 10−6 m/s), moderately well-drained soils with fine to moderately fine
textures such as loam, sandy clay loam. The rapid soils (Png, Ltc) are soils having high infiltration rates
(>5 × 10−6 m/s) are excessively well-drained such as loamy sand and sand. About 52% of the Huai Luang
watershed area is covered with moderately infiltrated soil series type (Figure 2).
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2.1.3. Climate

The climate in the Huai Luang basin is tropical, characterized by winter, summer, and rainy
seasons, and influenced by the Northeastern and Southwestern Monsoons. The rainy season brought
by the Southwestern monsoon originating at the Indian Ocean lasts from the mid-May to the end
of October. July and August are usually the months of intense rainfall. The winter season with
cold and dry weather due to the Northeastern Monsoon begins in November and ends in February.
From mid-February until mid-May, the weather is warm. The climate data from 1981 to 2010 (average
30 years) for this study are collected from the Thai Meteorological Department. The average annual
rainfall is about 1250 mm. More than 80% (1000 mm) of the total rainfall is concentrated in the wet
season only. Figure 3 shows the mean monthly rainfall and maximum and minimum air temperature
in the watershed. The mean maximum monthly rainfall is about 285 mm observed in August and the
mean minimum monthly rainfall of 3.5 mm observed in December. The minimum temperature varies
between 16.26 ◦C and 24.97 ◦C and maximum temperature varies between 29.04 and 36.40 ◦C.

Atmosphere 2017, 8, 143 6 of 18 

 

2.1.3. Climate  

The climate in the Huai Luang basin is tropical, characterized by winter, summer, and rainy 
seasons, and influenced by the Northeastern and Southwestern Monsoons. The rainy season brought 
by the Southwestern monsoon originating at the Indian Ocean lasts from the mid-May to the end of 
October. July and August are usually the months of intense rainfall. The winter season with cold and 
dry weather due to the Northeastern Monsoon begins in November and ends in February. From 
mid-February until mid-May, the weather is warm. The climate data from 1981 to 2010 (average 30 
years) for this study are collected from the Thai Meteorological Department. The average annual rainfall 
is about 1250 mm. More than 80% (1000 mm) of the total rainfall is concentrated in the wet season only. 
Figure 3 shows the mean monthly rainfall and maximum and minimum air temperature in the 
watershed. The mean maximum monthly rainfall is about 285 mm observed in August and the mean 
minimum monthly rainfall of 3.5 mm observed in December. The minimum temperature varies between 
16.26 °C and 24.97 °C and maximum temperature varies between 29.04 and 36.40 °C.  

 

Figure 3. Observed climate data in the study area during 1981–2010. 

2.2. Data and Methods  

2.2.1. Observed Precipitation 

The observed rainfall data is obtained from the Thai Meteorological Department (TMD), 
Thailand. There are six rainfall gauge stations (Figure 2a) installed in the Huai Luang Watershed, 
and the data collected from these stations provides continuous 10-min interval rainfall records. This 
data was used to calculate the maximum 30-min rainfall intensity (EI30) from 2000 to 2002. These 
stations also provided the daily rainfall data from 1981 to 2010. 

2.2.2. Estimation of Rainfall Erosivity  

In this study, the rainfall erosivity is determined over 2000 to 2002 to create a relationship 
between daily precipitation and daily EI30 by using the methodology described in [2] and [1]. 
Rainfall storm events of less than 12.7 mm were omitted from the rainfall erosivity calculation, 
unless at least 6.4 mm of rain dropped in 15 min. A storm period with less than 1.3 mm over 6 h was 
divided into two storms. The threshold of 12.7 mm is selected deliberately because it is a part of the 
criteria used to describe a storm for computing storm EI30 values and thus the R-factor [2]. These 
storms add little to erosivity and significantly reduce the quantity of rainfall data that must be 
processed [1]. Other studies have validated that changing the rainfall threshold from 12.7 mm to 0 
mm increases rainfall erosivity by no more than 3.5% or 5% on average. Therefore, storms less than 
12.7 mm are deleted when calculating erosivity for modern water erosion techniques such as RUSLE. 
Aforementioned has done to have some influence on computing reduced erosion for lower rainfall 

0

50

100

150

200

250

300

350

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ra
inf

all
 (m

m)

Figure 3. Observed climate data in the study area during 1981–2010.

2.2. Data and Methods

2.2.1. Observed Precipitation

The observed rainfall data is obtained from the Thai Meteorological Department (TMD), Thailand.
There are six rainfall gauge stations (Figure 2a) installed in the Huai Luang Watershed, and the data
collected from these stations provides continuous 10-min interval rainfall records. This data was
used to calculate the maximum 30-min rainfall intensity (EI30) from 2000 to 2002. These stations also
provided the daily rainfall data from 1981 to 2010.

2.2.2. Estimation of Rainfall Erosivity

In this study, the rainfall erosivity is determined over 2000 to 2002 to create a relationship between
daily precipitation and daily EI30 by using the methodology described in [1,2]. Rainfall storm events
of less than 12.7 mm were omitted from the rainfall erosivity calculation, unless at least 6.4 mm of
rain dropped in 15 min. A storm period with less than 1.3 mm over 6 h was divided into two storms.
The threshold of 12.7 mm is selected deliberately because it is a part of the criteria used to describe
a storm for computing storm EI30 values and thus the R-factor [2]. These storms add little to erosivity
and significantly reduce the quantity of rainfall data that must be processed [1]. Other studies have
validated that changing the rainfall threshold from 12.7 mm to 0 mm increases rainfall erosivity by no
more than 3.5% or 5% on average. Therefore, storms less than 12.7 mm are deleted when calculating
erosivity for modern water erosion techniques such as RUSLE. Aforementioned has done to have



Atmosphere 2017, 8, 143 7 of 18

some influence on computing reduced erosion for lower rainfall amounts and intensities because of
little or no runoff in such situations [35]. The concept of rainfall erosivity refers to the ability of any
rainfall event to erode soil. Rainfall erosivity is defined as the average annual value of the rainfall
erosion index [2]. The monthly rainfall erosivity value is computed by summing up EI30 values of
storms that occur during a month. The RUSLE model uses the approach developed by Brown and
Foster (1987) [36] to calculate the average annual rainfall erosivity, R (MJ mm ha−1 h−1 year−1)

R =
1
n

n

∑
j=1

[
m

∑
k=1

Ek.(I30)k

]
(1)

where, E is the total storm kinetic energy (MJ ha−1); I30 is the maximum intensity of a 30 minrainfall
(mm h−1); j is the index of the number of years used to produce the average; k is the index of the
number of storms in each year; m is the number of storms in each year; and n is the number of years.
To calculate the erosivity index (EI30) value for a particular storm (MJ ha−1 mm−1), the total storm
kinetic energy (E) (MJ ha−1) is multiplied by the maximum amount of rain falling within 30 consecutive
minutes (I30) expressed in millimeters per hour units (mm h−1). The total storm kinetic energy (E) is
calculated using this relation:

E =
m

∑
j=1

er∆Vr (2)

where, er is the rainfall energy per unit rainfall depth area in megajoules per hectare per millimeter
(MJ ha−1 mm−1); ∆Vr is the depth of rainfall in millimeters (mm) for the rth increment of the storm
hyetograph divided into m parts, in which each part essentially has constant rainfall intensity.

Rainfall energy per unit depth of rainfall (er) is calculated using this relation:

er = 0.29[1 − 0.72exp(−0.05ir)]. (3)

where er is measured in the unit of MJ ha−1 mm−1, and ir is rainfall intensity (mm h−1). A comparison of
the revised unit energy relation results with those of the relation presented in the Agriculture Handbook
No. 537 shows less than a 1% difference in the EI of some sample storms [31]. Rainfall intensity for
a particular increment in a rainfall event (ir) is calculated using the following relation,

ir =
∆Vr

∆tr
(4)

where, ∆tr is the duration of the increment over which rainfall intensity is considered to be constant in
an hour (h), and ∆Vr is the depth of rain falling (mm) during the increment.

The relationship between precipitation and R-factor obtained using the above methodology
is used to estimate the daily R-factor over 1982–2005, which further aggregated to monthly scale.
Finally, the relationship between monthly precipitation and monthly R-Factor is established.

2.2.3. General Circulation Models (GCMs)

The estimation of future climate change, as provided by General Circulation Models (GCMs),
does not entail the type of detailed storm information that is needed to predict the changes in rainfall
erosivity. Therefore, relationships between rainfall erosivity and monthly precipitation have to be
developed and could be used to analyze the impact of climate change on rainfall erosivity [11,32]. In this
study, the commonly used CCSM4, CSIRO-MK3 and MRI-CGCM3 under representative concentration
pathway (RCP) 4.5 and 8.5 were chosen to generate future precipitation scenarios in order to enable
the estimation of future rainfall erosivity under possible changes in climatic conditions (Table 3).
A study by McSweeney et al. (2015) [37] has shown better performances of CCSM4, CSIRO-MK3,
and MRI-CGCM3 in the South East Asia. These model details are given in Table 1.



Atmosphere 2017, 8, 143 8 of 18

Table 3. Details of the climate models used to downscale future precipitation for this study.

Model Center Model Name Resolution (0) Scenario Timescale Temporal Resolution

National Center for
Atmospheric Research CCSM4 1.25 × 0.94 Historical, RCP

4.5 and RCP 8.5 Daily

1982–2005
2021–2040 (2030s)
2041–2060 (2050s)
2061–2080 (2070s)
2081–2100 (2090s)

Commonwealth Scientific
and Industrial Research

Organization in collaboration
with Queensland Climate

Change Centre of Excellence

CSIRO-MK3.6.0 1.875 × 1.875 Historical, RCP
4.5 and RCP 8.5 Daily

1982–2005
2021–2040 (2030s)
2041–2060 (2050s)
2061–2080 (2070s)
2081–2100 (2090s)

Meteorological Research
Institute, Japan MRI-CGCM3 1.1 × 1.1 Historical, RCP

4.5 and RCP 8.5 Daily

1982–2005
2021–2040 (2030s)
2041–2060 (2050s)
2061–2080 (2070s)
2081–2100 (2090s)

Several statistical downscaling techniques have been established to translate large-scale GCMs
output into finer resolution [38]. In this study, the Bias correction method based on Quantile mapping
is used to correct the precipitation projections. The correction of precipitation is more challenging
compared to temperature as precipitation has many uncertainties. The non-parametric empirical
Quantile method discussed in [39] is used to correct the daily precipitation. The concept of Quant is
based on the following Equation (5),

A transformation factor ‘h’ is estimated that relates the model output variable to the observed
variable such as:

Pobs = h
(

PGCMcon
)
= 1/ECDFobs

(
ECDFGCMcon

(
PGCMcon

))
(5)

where, Pobs is observed precipitation; PGCMcon is GCM simulated precipitation for control
period; ECDFobs is empirical cumulative distribution frequency (CDF) for the observed variable;
and ECDFGCMcon is Empirical CDF for control period generated by GCM. To calculate the value of ‘h’,
the primary step should be estimation of probabilities of all the values in ECDFobs and ECDFGCMcon at
a fixed interval of 0.01. Then only, ‘h’ could be estimated as the relative difference between the two
ECDFs in each time slice. All calculations have been done using Qmap package of R.

3. Results and Discussion

3.1. Estimation of Rainfall Erosivity (R-Factor) Using Observed Precipitation

The R-factor values of each rainfall station, as well as the mathematical formula that relates
the R-factor values with rainfall, are developed based on historical rainfall data (2000–2002).
These mathematical models are used to estimate the rainfall erosivity values of each rainfall station
based on available monthly rainfall data. Table 4 presents R-factor and monthly rainfall (Pm) values for
each station. The power function gave the highest coefficient of determination during the comparison
of the six stations. Simple regression is used for the analysis of monthly rainfall versus the monthly R
factor. The regression equation had a 0.97 coefficient of determination for the Huai Luang watershed,
which indicates its suitability in estimating the rainfall erosivity of the other meteorological stations
(Figure 4). The resulting rainfall erosivity prediction models were assessed using a set of validation
statistics that compared the observed and estimated values of the R factor (Figure 5).
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Table 4. The developed R predictive models based on observed rainfall (1982–2005).

Station Name Longitude
(Eastings)

Latitude
(Northings)

Annual Average
Rainfall

R-Factor Model
(MJ mm ha−1 h−1 year−1)

Udon Thani 102.48.00 17.23.00 1417.3
R = 0.23P1.58

r2 = 0.98

Phen 102.55.00 17.39.00 1786.3
R = 0.25P1.58

r2 = 0.98

Ban Dung 103.15.42 17.41.53 1504.7
R = 0.36P1.52

r2 = 0.97

Kud Jub 102.37.00 17.13.00 1205.0
R = 0.51P1.45

r2 = 0.96

Nong Wau So 102.37.00 17.13.00 1248.3
R = 0.49P1.46

r2 = 0.95

Nong Khai 102.44.00 17.52.00 1582.8
R = 0.23P1.59

r2 = 0.98

All 6 stations data
R = 0.28P1.56

r2 = 0.97
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This study examined the relationship between monthly rainfall and rainfall erosivity for six rain
gauge stations in more detail and used Equations (1)–(4) in order to determine monthly and annual
rainfall erosivity. The results of the calculations of rainfall erosivity factor values are listed in Table 5.
Considerable differences in erosivity values were detected throughout the six rain gauge stations. It can
be seen that the Phen station showed the highest erosivity value (11,824 MJ mm ha−1 h−1 year−1).
On the other hand, the Nong Wau So station had the lowest value (7077 MJ mm ha−1 h−1 year−1). The R
values varied among the stations as a result of the rainfall depths and regional features determined
by elevation.

Table 5. Monthly rainfall erosivity for six rain gauge stations during 1982–2005 (Unit: MJ mm ha−1 h−1 month−1).

Code 354201 354001 354005 354008 354009 352201 All 6
Stations

Station Udon Thani Phen Ban Dung Kud Jub Nong Wau So Nong Khai Average

Jan 11 19 16 13 4 24 15
Feb 84 82 105 107 64 53 83
Mar 258 194 200 176 133 138 183
Apr 416 644 501 341 579 391 479
May 1104 1632 1205 1026 784 1198 1158
Jun 1419 2228 1827 1195 958 1608 1539
Jul 1397 1746 1740 1092 1155 1732 1477

Aug 1754 2767 2538 1540 1734 1901 2039
Sept 1411 1975 1702 1447 1258 1456 1542
Oct 341 480 175 294 379 423 349
Nov 18 31 24 32 24 29 26
Dec 7 24 4 0 4 13 9

Annual * 8220 11,824 10,036 7261 7077 8967 8898

Note: *—Unit for annual R is MJ mm ha−1 h−1 year−1.

3.2. Impact of Climate Change on Precipitation

Figure 6 presents the average monthly precipitation cycle for all climate projections in the four
future scales and the baseline period (1982 to 2005). Overall, there is a dramatic rise in precipitation
from January until it reaches its peak in August. After August, precipitation decreases significantly
until December. It is clear that the precipitation peak range in August of climate projections is between
257–332 mm in 2030s, 219–350 mm in 2050s, 264–392 mm in 2070s and 259–434 mm in 2090s. Table 6
presents individual model-projected mean annual precipitation, and its changes averaged over the
region during the four future periods under the RCP4.5 and RCP8.5 scenarios. All the models, except
models CCSM4 under RCP4.5 scenario for the 2030s and CCSM4 under RCP8.5 for the 2050s, projected
increases in precipitation over the watershed. The average annual precipitation for all four future time
periods increases from a baseline (1981–2010) of 1417 mm by about 6.4% (to 1282.1 mm) for 2030s,
14.6% (to 1623.9 mm) for 2050s, 26.7% (to 1795.9 mm) for 2070s and around 25.0% (to 1772.7 mm) for
2090s. Overall, the model CSIRO-MK3 under RCP8.5 scenario simulated the highest increase in mean
precipitation during the period of the 2070s, while CCSM4 under RCP4.5 scenario projected the largest
decrease of approximately −4.0% (1360.4 mm) for 2030s.
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Figure 6. Average monthly precipitations for all climate projections for the 2030s, 2050s, 2070s, 2090s
periods and the baseline period of 1982–2005.

Table 6. Annual average precipitations for climate projections compared to the baseline period,
1417 mm (1982–2005).

GCM Scenario
2030s 2050s 2070s 2090s

Rainfall
(mm)

Change
(%)

Rainfall
(mm)

Change
(%)

Rainfall
(mm)

Change
(%)

Rainfall
(mm)

Change
(%)

CCSM4 RCP4.5 1360.4 −4.0 1560.0 10.1 1577.9 11.3 1554.8 9.7
RCP8.5 1460.7 3.1 1405.5 −0.8 1708.7 20.6 1631.8 15.1

CSIRO-MK3 RCP4.5 1595.9 12.6 1598.2 12.8 1793.5 26.5 1634.6 15.3
RCP8.5 1587.1 12.0 1684.9 18.9 1968.8 38.9 1808.5 27.6

MRI-CGCM3 RCP4.5 1517.5 7.1 1428.1 0.8 1812.4 27.9 1851.5 30.6
RCP8.5 1531.6 8.1 2066.9 45.8 1914.6 35.1 2155.4 52.1

Average 1282.1 6.4 1623.9 14.6 1795.9 26.7 1772.7 25.0

Figure 7 presents the precipitation change in the wet and dry seasons for all climate projections in
the four periods and the baseline period (1982 to 2005). In general, there is a change in precipitation
of all climate projections in the wet season (May to October); between −10 to 175 mm in 2030s, 6 to
424 mm in 2050s, 200 to 461 mm in 2070s and 130 to 709 mm in 2090s. Overall, the model MRI
under RCP8.5 scenario predicted the highest increase in precipitation in the wet season during the
period of 2050s, 2070s and 2090s while CCSM4 under RCP4.5 scenario projected the highest decrease
approximately −10 mm for 2030s.
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Figure 7. Precipitation change in (a) wet and (b) dry season for all climate projections for 2030s, 2050s,
2070s, and 2090s.

3.3. Impact of Climate Change on Rainfall Erosivity

The relationship between monthly precipitation and rainfall erosivity is used to predict rainfall
erosivity values by equations (R = 0.28P1.56), as shown in Figure 4. One of the main objectives of this
study is to predict rainfall erosivity under future climate scenarios, based on GCMs outputs consisting
of CCSM4, CSIRO-MK3, and MRI-CGCM3 under RCP 4.5 and 8.5 scenarios. The use of multiple
GCMs and RCP scenarios helps to address uncertainties inherent to models reliant on climatic factors.
Table 7 presents the impact of climate change on annual rainfall erosivity in the Huai Luang watershed.
The average of each GCM combination shows a rise in the average annual rainfall erosivity for all four
future time periods. While the baseline value is 8302 MJ mm ha−1 h−1 year−1, the increase ranges
from 12% (9269 MJ mm ha−1 h−1 year−1) in 2030s to 43% (11,854 MJ mm ha−1 h−1 year−1) in 2070s.
The magnitude of change varies, depending on the GCMs and RCPs with the largest change being
82.59% (15,159 MJ mm ha−1 h−1 year−1) occurring under the MRI-CGCM3 under RCP8.5 scenario
in 2090s. Also, there is a decrease in rainfall erosivity found as compared to the baseline of
8302 MJ mm ha−1 h−1 year−1, from −2.29% (8114 MJ mm ha−1 h−1 year−1) for CCSM4 under RCP4.5
scenario in 2030s to −2.58% (8088 MJ mm ha−1 h−1 year−1) for the 2050s period.
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Table 7. Annual rainfall erosivity and percent change for all climate projections compared to the base
period (1982–2005).

Climate Models GHGES
Annual Rainfall Erosivity
(MJ mm ha−1 h−1 year−1) Mean Change (%) Stdev.

Min Max Mean

Base line 6530 11,363 8302 0.00 1343

2030s

CCSM4 RCP4.5 6539 10,705 8114 −2.26 1266
RCP8.5 7204 12,344 9280 11.78 1513

CSIRO-MK3.6.0 RCP4.5 7974 12,790 9858 18.74 1401
RCP8.5 8074 13,108 10,109 21.77 1490

MRI-CGCM3 RCP4.5 7113 11,224 8893 7.12 1126
RCP8.5 7377 12,248 9359 12.73 1405

Average 7380 12,070 9269 12 1367

2050s

CCSM4 RCP4.5 8031 13,350 10,074 21.34 1538
RCP8.5 6998 11,757 8866 6.79 1446

CSIRO-MK3.6.0 RCP4.5 7845 12,616 9808 18.14 1433
RCP8.5 8678 14,089 11,025 32.80 1592

MRI-CGCM3 RCP4.5 6293 10,442 8088 −2.58 1126
RCP8.5 11,210 17,233 14,009 68.74 1665

Average 8176 13,248 10,312 24 1467

2070s

CCSM4 RCP4.5 8160 13,302 10,217 23.07 1530
RCP8.5 8943 14,786 11,449 37.91 1685

CSIRO-MK3.6.0 RCP4.5 9561 16,445 12,506 50.64 1954
RCP8.5 10,966 17,034 13,376 61.12 1844

MRI-CGCM3 RCP4.5 9060 14,618 11,390 37.20 1540
RCP8.5 9757 15,313 12,187 46.80 1598

Average 9408 15,250 11,854 43 1692

2090s

CCSM4 RCP4.5 8025 13,281 10,110 21.78 1608
RCP8.5 8513 14,084 10,729 29.23 1570

CSIRO-MK3.6.0 RCP4.5 7869 12,976 10,045 20.99 1485
RCP8.5 9552 15,407 12,042 45.05 1745

MRI-CGCM3 RCP4.5 9764 15,894 12,272 47.82 1736
RCP8.5 12,247 19,086 15,159 82.59 1843

Average 9328 15,121 11,726 41 1665

Figure 8 shows that monthly rainfall erosivity changes under future climate are not in one direction
for all GCMs (CCSM4, CSIRO, and MRI) under RCP4.5 and RCP8.5 scenarios. The intra-monthly
patterns of rainfall erosivity changes range from the unimodal to the base line period. It is clear that
this significant decrease in rainfall erosivity from November to February and an increase from March
to October for all four time periods. Future changes in rainfall erosivity in comparison with the base
period (8302 MJ mm ha−1 h−1) is determined to be between 2.26 and 21.77% in 2030s, −2.58 and
68.74% in 2050s, 23.07 and 50.64% in 2070s and 20.99 and 82.59% in 2090s depending on GCMs and
RCP scenarios.



Atmosphere 2017, 8, 143 14 of 18

Atmosphere 2017, 8, 143 14 of 18 

 

 
Figure 8. Rainfall erosivity for all climate projections for 2030s, 2050s, 2070s, 2090s and the baseline 
period (1982–2005) for the Huai Luang watershed. 

Figure 9 illustrates the projected spatial patterns in rainfall erosivity changes using 
multivariate models (IPCC AR5) [7] under RCP4.5 and RCP8.5 scenarios for the four periods of 
2030s, 2050s, 2070s and 2090s. The average of the three climate models under RCP4.5 scenarios 
shows that the average annual rainfall erosivity increases from the baseline rate of 8302 MJ mm ha−1 
h−1 yr−1 by 7.9% for the 2030s, by 12.3% for the 2050s, by 37.0% for the 2070s and by 31.2% for the 
2090s. The increase in the annual rainfall erosivity using average multivariate models (IPCC AR5) 
under RCP8.5 scenarios from the base line (8302 MJ mm ha−1 h−1 year−1) was found to be 15.4% for 
the period of 2030s, 36.1% for the 2050s, 48.6% for the 2070s and 52.3% for the 2090s. It is clear that 
this significant increase in rainfall erosivity from baseline under RCP 4.5 and RCP8.5 scenarios for 
all periods. Projected rainfall erosivity increased over the most of the watershed. The models tended 
to project greater relative increases in rainfall erosivity in the northern compared to the southern 
watershed (Figure 9).  

The results of present study are compared with Global Rainfall Erosivity database (Panagos 
2017) [23]. According to this database, the range of rainfall erosivity over Thailand is found to be 
2986 to 13,253 MJ mm ha−1 h−1 year−1. Whereas, the range of R-factor over the Huai Luang watershed 
6426 to 9700 MJ mm ha−1 h−1 year−1. R-factors from presents study are in the range of 7077–11,824 MJ 
mm ha−1 h−1 year−1. A previous study by Plangoen et al. (2013) have estimated the future rainfall 
erosivity in a watershed from Thailand in the range of 4866 to 6384 MJ mm ha−1 h−1 year−1 using the 
modified Fournier Index (MFI) and the R-factors using HadCM3 and PRECIS RCM under A2 and B2 
scenarios and NCAR CCSM3 under A2, A1b and B1. However, in the present study, future rainfall 
erosivity ranged from 8114 to 15,519 MJ mm ha−1 h−1 year−1 by using a relationship between rainfall 

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

Ra
in

fa
ll 

er
os

iv
ity

  (
M

J.m
m

.h
a-

1.
h-

1)

month

2030s

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12

Ra
in

fa
ll 

er
os

iv
ity

  (
M

J.m
m

.h
a-

1.
h-

1)

month

2050s

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12

Ra
in

fa
ll 

er
os

iv
ity

  (
M

J.m
m

.h
a-

1.
h-

1)

month

2070s

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12

Ra
in

fa
ll 

er
os

iv
ity

  (
M

J.m
m

.h
a-

1.
h-

1

month

2090s

Figure 8. Rainfall erosivity for all climate projections for 2030s, 2050s, 2070s, 2090s and the baseline
period (1982–2005) for the Huai Luang watershed.

Figure 9 illustrates the projected spatial patterns in rainfall erosivity changes using multivariate
models (IPCC AR5) [7] under RCP4.5 and RCP8.5 scenarios for the four periods of 2030s, 2050s, 2070s
and 2090s. The average of the three climate models under RCP4.5 scenarios shows that the average
annual rainfall erosivity increases from the baseline rate of 8302 MJ mm ha−1 h−1 yr−1 by 7.9% for the
2030s, by 12.3% for the 2050s, by 37.0% for the 2070s and by 31.2% for the 2090s. The increase in the
annual rainfall erosivity using average multivariate models (IPCC AR5) under RCP8.5 scenarios from
the base line (8302 MJ mm ha−1 h−1 year−1) was found to be 15.4% for the period of 2030s, 36.1% for
the 2050s, 48.6% for the 2070s and 52.3% for the 2090s. It is clear that this significant increase in rainfall
erosivity from baseline under RCP 4.5 and RCP8.5 scenarios for all periods. Projected rainfall erosivity
increased over the most of the watershed. The models tended to project greater relative increases in
rainfall erosivity in the northern compared to the southern watershed (Figure 9).

The results of present study are compared with Global Rainfall Erosivity database (Panagos 2017) [23].
According to this database, the range of rainfall erosivity over Thailand is found to be 2986 to
13,253 MJ mm ha−1 h−1 year−1. Whereas, the range of R-factor over the Huai Luang watershed
6426 to 9700 MJ mm ha−1 h−1 year−1. R-factors from presents study are in the range of
7077–11,824 MJ mm ha−1 h−1 year−1. A previous study by Plangoen et al. (2013) have estimated the
future rainfall erosivity in a watershed from Thailand in the range of 4866 to 6384 MJ mm ha−1 h−1 year−1

using the modified Fournier Index (MFI) and the R-factors using HadCM3 and PRECIS RCM under A2
and B2 scenarios and NCAR CCSM3 under A2, A1b and B1. However, in the present study, future rainfall
erosivity ranged from 8114 to 15,519 MJ mm ha−1 h−1 year−1 by using a relationship between rainfall and
erosivity based on CSSM4, CSIRO-MK3.6.0, and MRI-CGCM3 under RCP 4.5 and RCP8.5. This difference
might have resulted from the differences in GCM and scenarios used.
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4. Conclusions

The use of multiple GCMs to estimate future rainfall erosivity helps to address the uncertainties
inherent in global climate modeling as they provide a range of equally reasonable future climatic
conditions. The present study uses multivariate models (CCSM4, CSIRO-MK3, and MRI-CGCM3)
under RCP4.5 and RCP8.5 scenarios to predict average monthly and average annual rainfall erosivity
in the Huai Luang watershed located in the Northeastern Thailand. The Quantile mapping method
is used as a downscaling technique to generate future precipitation data. Future rainfall erosivity
estimated by using the relationship between monthly precipitation and monthly rainfall erosivity.
The results of this study showed a significant increase in annual rainfall erosivity using three general
circulation models under RCP4.5 and RCP8.5 scenarios for the four periods. The expected increase in
rainfall erosivity may have significant effects on soil erosion in the watershed, with projected changes
in precipitation and rainfall erosivity causing increased soil loss in the future; proper strategies must
be developed to tackle the possible increase in soil erosion and sediment deposition in the Huai Luang
reservoir. The results of this study are expected to help development planners and decision makers
when planning and implementing suitable soil erosion control plans to adapt climate change in Huai
Luang watershed.
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