Forecasting Retail Oil and Natural Gas Vehicles Prices in Thailand Using Time Series Data Mining Techniques

Pitchayakorn Lake

Faculty of Information Technology, Siam University, Thailand pitchayakorn@siam.edu

Abstract— The purpose of this research is to develop the model of forecasting retail oil and natural gas vehicles prices for automobiles in Thailand using time series data mining techniques. There are three techniques such as Linear Regression, Multi-Layer Perceptron and Support Vector Machine for Regression. The data used for this study was collected the retail oil and natural gas vehicles prices in Thailand from 2012-2018 AD. totally 84 months. This research found that the suitable forecasting model for retail oil and natural gas vehicles prices as followed: 1) The forecasting model using Linear Regression was the most suitable for Gasohol E85 and Ultra Force Diesel, which had the rate of MMRE (Mean Magnitude of Relative Error) with the percentage of 2.46, and 4.60. 2) The forecasting model using Support Vector Machine for Regression was the most suitable for Gasohol 95, Gasohol E20 and Natural Gas Vehicles (NGV), which had the rate of MMRE with the percentage of 3.69, 3.20, 3.54, and 6.89, respectively.

Index Terms—Retail Oil and Natural Gas Vehicles Prices in Thailand, Times Series Analysis, Data Mining Techniques

I. INTRODUCTION

Office of the National Economic and Social Development Council (NESDC) reported Thailand's economy grew at an average annual rate of 3.90% in 2017, compared with an increasing in 2016. According to an increasing of export products by 9.70%, household consumption, government expenditure, investment and business travel [1]. However, there is the increasing number of tourists arrive in Thailand. On the other hand, the industrial index (MPI) increases 1.60 percent, the production of rubber products, the manufacture of electronic tubes, and the production of engine and automobile spare parts etc. Then the use of energy is an important mechanism in driving the country's economy. Due to the shortage of energy, the government has to import energy for commercial use. The factors that cause energy crisis are as follows.

Decreasing the production of energy

Office of the National Economic and Social Development Board (NESDB) states that the energy consumption was 2,120 barrels compare to the crude oil consumption per day, which increased by 1.10 % from 2016. Natural gas has the highest consumption rate of 42.0% followed by coal/lignite tar, the use of hydroelectric/electricity imports. The decreasing of production energy were 972 barrels in 2016 compare to the crude oil consumption per day in 2015, which decrease by 4.60%. The production of natural gas, crude oil and lignite decrease by 3.90%, 13.40%, and 4.50%, respectively as a result of the decreasing source of energy.

Type of oil consumption

In 2017, the average consumption rate of gasoline and gasohol were 30.10 million liters per day, which increase by 3.40% from 2016, according to the falling oil prices of gasohol and gasoline. The car users switched from gasohol to gasoline because there were more gasoline service stations

than gasohol service stations. However, natural gas

consumption was 4,682 million cubic feet per day, which decreased by 1.0% from 2016. Although the usage of gasohol decreased by 12.90%, the consumption of natural gas in the industrial sector increased by 4.0%.

II. RESEARCH OBJECTIVES

The purpose of this research is to develop the model of forecasting retail oil and natural gas vehicles prices for automobiles in Thailand using time series data mining techniques. There are three techniques such as Linear Regression, Multi-Layer Perceptron and Support Vector Machine for Regression. The researcher chooses time series for the experiment, which can be divided into 6 data sets. the researcher selects 6 data sets for the increasing consumption e.g. Gasohol 91, Gasohol 95, Gasohol E20, Gasohol E85 and Ultra Force Diesel and natural gas for vehicles (NGV), which have the average price of 30.7835 baht, 31.9928 baht, 28.6693 baht, 21.4488 baht, 27.4076 baht, and 12.1327 baht respectively.

III. RESEARCH METHODS

Times Series Data

Time series data is a data set that is collected and stored continually under increasing time [2]. These data will be collected continuously for the periods of time such as gold price and the amount of water in the dam, which will be recorded in daily. Sometimes, the data may be collected though the sequence of time such as car accidents during the New Year Festival. Time series are the combination of level, trend, and seasonal components. However, the purpose of time series data collection is to create a model for prediction future values based on Times Series Analysis.

Linear Regression

Cai and Hall found that linear regression is the method for analyzing the data in order to find the relationship between dependent variables and independent variables [3]. It shows the relationship between the dependent variable and the independent variable in the form of quantitative data, which can be written as follow.

Multi-Layer Perceptron: MLP

Kubat suggested that multilayer perceptron has fully connected feed-forward nets [4].

This network has one or more layers that have been developed by the weakness of Single Layer Perceptron for providing higher computation. It consists of input layer, hidden layer and output layer [5].

Support Vector Machine for Regression

Support Vector Machine for Regression (SVM) is the algorithms used to classify group of data by using the decision hyperplane. SVM is applied to create equations for estimating linear regression that represents decision hyperplane. It is the method that used the current and historical data. After SVM can classify to the training data set, it can make predictions of outcomes. This research creates the method of linear regression function by using the sequential minimal optimization for SVM Regression (SMOreg) [6]. The methodology that the researcher used as follows:

1. Study and analyze the problem

The rate of domestic energy usage is increasing every year, especially the use of oil and natural gas. The import of energy has an impact on the growth rate of economy and industry. The researcher developed this model for forecasting retail oil and natural gas vehicles prices for automobile in Thailand according to fluctuated prices. The researcher gathered retail oil prices and natural gas prices last year. The data set was used by the researcher, which is the retail oil and natural gas for vehicles automobiles in Thailand for 2012 to 2018 (PTT Public Company Limited) [7].

2. Data Preparation.

This research focuses on building a model for predicting oil and natural gas prices for automobiles in Thailand by using times series data mining techniques e.g. Linear Regression, Multi-Layer Perceptron and Support Vector Machine for Regression. This forecasting model derived from three algorithms, which can compare the performance between them. This research was divided into 2 parts: 1) training data set by using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for comparing the model efficiency. 2) testing data set by using Magnitude of Relative Error (MRE) for estimating the model's performance, which split it into monthly. This data set consists of retail oil and natural gas prices for automobiles, which divided into 84 months for 2012 - 2018. Each data set was divided into 2 parts: 1) training data set for predictive model in 2012-2017. 2) testing data set in 2018.

3. Data Analysis

The research used WEKA version 3.9.1 to analyze and create the model of forecasting retail oil and natural gas vehicles prices for automobiles in Thailand by using times series data mining techniques. Therefore, the result will be in the form of a model that is considered as the knowledge representation. The forecast model looks like sliding window, which is in the form of time series. The research used data set from 2012-2017 as a testing data. This data set

was divided into 4 lagged: 1) 3 month 2) 6 months 3) 9 months and 4) 12 months. The results of the testing can be used to determine the algorithms that suitable for the model. The target prediction in 2018, which are an indicator of suitable algorithm as shown in Table 1

Table 1 Monthly Time Series Data Set

			Pri	ce of Gaso	hol 91							
	(Bath/Liter)											
Month	2012	2013	2014	2015	2016	2017	2018 Testing Data set					
January	34.3633	35.6300	38.2800	26.4467	22.9800	27.3050	27.9300					
February	36.7700	37.2300	38.0800	27.2000	21.8467	27.8467	27.4300					
March	38.4800	37.2600	38.3300	28.0300	23.0911	26.5800	27.5133					
April	38.6550	35.8467	38.7300	27.3800	23.6050	27.0300	28.0050					
May	36.5657	35.2800	38.4800	28.3133	24.8200	26.5467	29.0675					
June	34.4000	36.3800	38.5800	28.7800	24.4371	25.4800	28.9800					
July	35.2657	37.7467	37.7800	27.5967	23.4675	25.4050	29.3467					
August	36.4550	37.1800	36.6300	26.1200	23.5133	26.5050	29.5500					
September	35.3800	36.4550	35.7800	25.8550	24.7300	27.2800	30.5300					
October	35.2633	35.9800	34.7200	25.9000	25.4600	26.9133	30.6467					
November	34.5200	36.7300	32.7000	25.1800	25.1550	27.8300	28.3527					
December	35.1300	37.7800	30.0800	23.7800	26.6800	27.6800	26.7800					
Average	35.9373	36.6249	36.5142	26.7151	24.1488	26.8668	28.6777					

Table 1 shows times series that will be split into 12 months. The researcher used time series data mining techniques for prediction retail oil and natural gas vehicles prices for automobiles: 1) Linear Regression, 2) Multi-Layer Perceptron, and 3) Support Vector Machine for regression

The researcher calculated the MRE and MMRE in order to select the appropriate model to implement. [8]

Fig. 1 The Model processing for forecasting retail oil and natural gas prices for automobiles [9]

IV. RESULTS

As the results, the model performance was measured for predicting retail oil and natural gas prices for automobile by using time series data mining techniques. These techniques conduct in 3 methods by using training data set. The model processing as follow:

1) Comparing the performance of predictive models.

The research selected the retail oil and natural gas price into 6 data sets for create the forecasting model. The data set was used in 2012-2017 for testing the model. Then they would be divided into 4 lagged: 1) 3 months, 2) 6 months, 3) 6 months, and 4) 12 months. These can create the model for predicting retail oil and natural gas prices for automobile as well as analyze the efficiency of data mining techniques.

 Table 2 Comparison of prediction model performance by using historical data (Lagged).

Data Set	Times Series Data Mining Techniques										
Gasoline and	Quarter	Quarter Linear Regression			ilayer ptron	SMOreg					
Gasonol	Laggeu	MAE	RMSE	MAE	RMSE	SMM MAE 0.8192 0.7950 0.7653 0.802 0.803 0.772 0.8563 0.803 0.7125 0.7527 0.6894 0.4796 0.4796 0.4263 0.4196 0.4689 0.4689 0.4514 0.4513 0.1113 0.1106 0.1106 0.1106	RMSE				
	Lag 3	0.7965	0.9639	0.7868	0.9548	0.8192	1.0059				
DS#1	Lag 6	0.7935	0.9582	0.9195	1.1325	0.7950	1.0257				
Gasohol 91	Lag 9	0.7416	0.9286	0.5468	0.6976	0.7663	1.0302				
	Lag 12	0.7083	0.8906	0.4611	0.6039	SMC MAE 0.8192 0.7950 0.7650 0.7850 0.8263 0.8263 0.8273 0.8263 0.8243 0.7712 0.7712 0.7716 0.6894 0.4263 0.4428 0.4428 0.44263 0.4428 0.4514 0.4514 0.4533 0.1113 0.4533 0.1113 0.1166	0.9858				
	Lag 3	0.8139	1.0009	0.7839	0.9619	0.8563	1.0820				
DS#2	Lag 6	0.8105	0.9954	0.7631	0.9179	0.8256	1.0935				
Gasohol 95	Lag 9	0.7979	0.9874	0.5990	0.7631	0.8003	1.0865				
	Lag 12	0.7318	0.9379	0.5015	0.6293	SMC MAE 0.8192 0.7950 0.7650 0.7850 0.8563 0.82563 0.82563 0.8003 0.7122 0.7712 0.6894 0.4263 0.44263 0.44263 0.44263 0.45533 0.4113 0.45533 0.1113 0.41066 0.1166	1.0570				
	Lag 3	0.7971	0.9763	0.8589	1.0277	0.8245	1.0539				
DS#3	Lag 6	0.7835	0.9594	0.9438	1.1828	0.7712	1.0151				
DS#3 Gasohol E20	Lag 9	0.7367	0.9269	0.6348	0.8392	0.7527	1.0002				
	Lag 12	0.7059	0.8999	0.5670	0.6798	SMC 0.8192 0.7950 0.8563 0.8256 0.8256 0.8256 0.8245 0.7527 0.7527 0.7527 0.428 0.4283 0.4428 0.4428 0.44283 0.4428 0.4428 0.4421 0.4533 0.1113 0.1106	0.9361				
	Lag 3	0.4816	0.6366	0.6621	0.8573	0.4796	0.6591				
DS#4	Lag 6	0.4614	0.5995	0.6175	0.7832	0.4428	0.6007				
Gasehol E85	Lag 9	0.4490	0.5894	0.4912	0.6297	0.4263	0.5788				
	Lag 12	0.4270	0.5425	0.2865	0.3706	0.4196	0.5869				
DC#F	Lag 3	0.5015	0.6982	0.4997	0.6811	0.4689	0.7672				
Ultro Force	Lag 6	0.4965	0.6963	0.5155	0.6757	0.4421	0.7576				
DS#5 Ultra Force Diesel	Lag 9	0.4744	0.6718	0.5643	0.6822	0.4514	0.7766				
Diesei	Lag 12	0.4671	0.6712	0.4842	0.6112	0.4533	0.7848				
	Lag 3	0.1366	0.2160	0.1475	0.2381	0.1113	0.2219				
DS#6	Lag 6	0.1332	0.2143	0.1786	0.2773	0.1057	0.2150				
NGV	Lag 9	0.1361	0.2187	0.1759	0.2388	0.1106	0.2198				
	Lag 12	0.1392	0.2235	0.1712	0.2373	0.1165	0.2264				

Table 2 shows the results of prediction for each data mining techniques. The research found that there are the different number of lagged by using MAE and RMSE as performance indicator. The experiment showed that the model used linear regression techniques, multi-layer Perceptron and support vector machine. It is the most efficient for lag 12 in price of gasohol 91 (DS#1), gasohol 95 (DS#2), and gasohol E20 (DS#3). Price of gasohol E85 (DS#4) is the most efficient when the model used linear regression techniques and multi-layer perceptron in lag 12. Due to support vector machine is the most efficient MAE in lag 12. The RMSE is the most effective in lag 9. Price of Ultra Force Diesel (DS#5) is the most efficient when the model used linear regression techniques and multi-layer perceptron in lag 12. However, support vector machine is suitable for lag 6. Price of NGV (DS#6) is the most efficient when the model used linear regression in lag 6. Multi-layer perceptron is the most efficient MAE in lag 3 whereas RMSE is the most effective in lag 12. Moreover, support vector machine is the most effective in lag 6. The researcher creates a model to predict monthly retail oil and natural gas vehicles prices for automobiles.

2) Comparison of Performance Prediction Model.

The researcher applies the model of forecasting retail oil and natural gas vehicles prices for automobiles in 2018. The data set was split type of gasoline and gasohol in each month by using time series data mining techniques, and magnitude of relative error as shown in Table 3.

	Data set			Time	Series Data M	lining Techr	niques	
Type	No. 2010		Linear Regression		Multilayer P	erceptron	SMOreg	
Type	1 cal	2018	Lag	12	Lag	12	Lag 12	
	Month	Actual	Estimate	MRE	Estimate	MRE	Estimate	MRE
	January	27.9300	35.9075	0.2856	26.8717	0.0379	27.7347	0.0070
	February	27.4300	35.8603	0.3073	25.0089	0.0883	27.3465	0.0030
	March	27.5133	35.7595	0.2997	24.4817	0.1102	27.7129	0.0073
	April	28.0050	35.6418	0.2727	23.2181	0.1709	27.7402	0.0095
	May	29.0675	35.5215	0.2220	21.8570	0.2481	27.3787	0.0581
DS#1	June	28.9800	35.4041	0.2217	21.9469	0.2427	27.5031	0.0510
Gasohol 91	July	29.3467	35.2915	0.2026	23.2207	0.2087	27.9837	0.0464
	October	29.5500	35.1843	0.1907	23.9153	0.1907	28.3147	0.0418
	September	30.5300	35.0824	0.1491	22.8576	0.2513	28.2128	0.0759
	October	30.6467	34.9858	0.1416	22.1891	0.2760	28.5163	0.0695
	November	28.3527	34.8942	0.2307	20.8302	0.2653	28.5551	0.0071
	December	26.7800	34.8074	0.2998	19.9072	0.2566	28.5514	0.0661
	MM	RE	23.53	3%	19.56	5%	3.69	%

From Table 3, The model of support vector machine was the most efficient for gasohol 91, which had the rate of MMRE with the percentage of 3.69.

Table 4 Comparing model's predictive performance gasohol95

	Data set			Time	Series Data M	ining Techn	iques		
Trme	Year 2018		Linear Re	gression	Multilayer P	erceptron	SMOreg		
Type			Lag 12		Lag	12	Lag	12	
	Month	Actual	Estimate	MRE	Estimate	MRE	Estimate	MRE	
	January	28.2000	28.2230	0.0008	27.8206	0.0135	28.0208	0.0064	
	February	27.7000	28.1167	0.0150	27.0182	0.0246	27.7270	0.0010	
	March	27.7833	28.3807	0.0215	27.2780	0.0182	28.0831	0.0108	
	April	28.2750	28.5038	0.0081	27.1247	0.0407	28.1773	0.0035	
1000000000	May	29.3375	28.3998	0.0320	26.8428	0.0850	27.9585	0.0470	
DS#2	June	29.2500	28.5105	0.0253	27.2468	0.0685	28.2085	0.0356	
Gasohol 95	July	29.6167	29.0491	0.0192	28.1155	0.0507	28.7128	0.0305	
	October	29.8200	29.6355	0.0062	29.0344	0.0263	29.0756	0.0250	
	September	30.8000	29.8809	0.0298	28.9383	0.0604	29.0257	0.0576	
	October	30.9167	30.3664	0.0178	29.0744	0.0596	29.3571	0.0504	
	November	28.6227	30.6104	0.0694	28.2739	0.0122	29.4068	0.0274	
	December	27.0500	30.8783	0.1415	27.6696	0.0229	29.4684	0.0894	
	MM	RE	3.22	%	4.02	%	3.20%		

From Table 4 found that the model of support vector machine was the most efficient for gasohol 95, which had the rate of MMRE with the percentage of 3.20.

Table 5 Comparing model's predictive performance gasoholE20

	Data set			Time	Series Data M	lining Tech	niques	
Туре	Year	2018	Linear Regression		Multilayer P	erceptron	SMOreg	
			Lag	12	Lag	12	Lag	12
	Month	Actual	Estimate	MRE	Estimate	MRE	Estimate	MRE
	January	25.6900	25.6721	0.0007	24.1821	0.0587	25.6696	0.0008
	February	25.1900	25.5194	0.0131	22.9804	0.0877	25.6133	0.0168
	March	25.2733	25.7144	0.0175	23.5308	0.0689	25.8924	0.0245
	April	25.7650	25.7700	0.0002	23.8313	0.0751	25.7218	0.0017
	May	26.8275	25.5901	0.0461	24.1078	0.1014	25.5399	0.0480
DS#3	June	26.7400	25.6076	0.0423	25.3737	0.0511	25.7170	0.0383
Gasohol E20	July	26.7067	26.0518	0.0245	26.4194	0.0108	26.0404	0.0249
	October	26.8700	26.5618	0.0115	25.7678	0.0410	26.3316	0.0200
	September	27.7900	26.7426	0.0377	23.9651	0.1376	26.3093	0.0533
	October	27.9067	27.1565	0.0269	23.3505	0.1633	26.5697	0.0479
	November	25.6127	27.3377	0.0673	22.9681	0.1033	26.5663	0.0372
	December	24.0400	27.5267	0.1450	23.0670	0.0405	26.7128	0.1112
	MM	RE	3.61	%	7.83	%	3.54	%

From Table 5 found that the model of support vector machine was the most efficient for gasohol E20, which had the rate of MMRE with the percentage of 3.54.

Table 3 Comparing model's predictive performance gasohol91

Table 6 Comparing model's predictive performance gasoholE85

	Data set				Time S	Series Data Minin	g Technique	5				
Tema	Verse	1010	Linear	Regression	n Multila	yer Perceptron		SMOreg				
Type DS#4 Gasohol E85	r car	2018	Lag	12	L	ag 12	Lag	9	Lag 12			
	Month	Actual	Estimate	MRE	Estimate	MRE	Estimate	MRE	Estimate	MRE		
	January	20.7900	20.8678	0.0037	20.4903	0.0144	20.7984	0.0004	20.6889	0.0049		
	February	20.5233	20.9929	0.0229	20.5878	0.0031	20.9961	0.0230	20.8908	0.0179		
	March	20.2900	20.9557	0.0328	21.1583	0.0428	21.1125	0.0405	21.2013	0.0449		
	April	20.4150	21.0425	0.0307	21.3291	0.0448	21.1122	0.0342	21.2124	0.0391		
	May	21.1525	21.2028	0.0024	21.8175	0.0314	21.2196	0.0032	21.3126	0.0076		
DS#4	June	21.1400	21.2158	0.0036	22.6214	0.0701	21.3126	0.0082	21.6184	0.0226		
Gasohol	July	21.1067	21.3020	0.0093	23.2485	0.1015	21.3580	0.0119	21.8546	0.0354		
E85	October	21.2250	21.5887	0.0171	23.4458	0.1046	21.4504	0.0106	21.9803	0.0356		
	September	21.7233	21.5227	0.0092	22.7755	0.0484	21.5240	0.0092	22.1291	0.0187		
	October	21.7344	21.6714	0.0029	22.1138	0.0175	21.5833	0.0070	22.3218	0.0270		
	November	20.5309	21.7589	0.0598	22.4273	0.0924	21.6581	0.0549	22.3586	0.0890		
	December	19.7757	21,7772	0.1012	23.2667	0.1765	21.7390	0.0993	22.4643	0.1360		
	MM	RE	2.46	%	6.	23%	2.52%	1	3.9	9%		

From Table 6 found that the model of linear regression was the most efficient for gasohol E85, which had the rate of MMRE with the percentage of 2.46.

 Table 7 Comparing model's predictive performance Ultra

 Force Diesel

	Data set		Time Series Data Mining Techniques								
Tune	Veen	1010	Linear Reg	gression	Multilayer	Perceptron	SMO	reg			
Type	rear.	2018	Lag	12	Lag	12	Lag 6				
	Month	Actual	Estimate	MRE	Estimate	MRE	Estimate	MRE			
	January	27.6650	26.6787	0.0357	27.7382	0.0026	26.7091	0.0346			
	February	26.8400	26.7058	0.0050	29.8247	0.1112	26.6545	0.0069			
	March	27.0233	26.8884	0.0050	31.0814	0.1502	26.6935	0.0122			
	April	27.6150	27.0173	0.0216	31.3501	0.1353	26.7174	0.0325			
	May	28.9525	27.1478	0.0623	30.9634	0.0695	26.8252	0.0735			
DS#5	June	28.7900	27.3285	0.0508	30.2987	0.0524	26.9881	0.0626			
Ultra Force	July	29.0733	27.3950	0.0577	29.9226	0.0292	27.1247	0.0670			
Diesei	October	29.1600	27.3615	0.0617	29.9919	0.0285	27.2314	0.0661			
	September	29.7900	27.3539	0.0818	30.4105	0.0208	27.3238	0.0828			
	October	29.8900	27.3717	0.0843	30.5736	0.0229	27.3938	0.0835			
	November	28.7082	27.3884	0.0460	30.4718	0.0614	27.4564	0.0436			
	December	26.3757	27.4289	0.0399	30.4825	0.1557	27.5265	0.0436			
	MMRE		4.60	10	7.0	0%	5.07%				

From Table 7 found that the model of linear regression was the most efficient for Ultra Force Diesel, which had the rate of MMRE with the percentage of 4.60.

Table 8 Comparing model's predictive performance NGV

	Data set				Time Se	ries Data I	Mining Tech	niques		
	Year	018	Linear Re	gression	N	Iultilayer	Perceptron		SMO	reg
Type			Lag	6	Lag	3	Lag	12	Lag	6
	Month	Actual	Estimate	MRE	Estimate	MRE	Estimate	MRE	Estimate	MRE
	January	13.3275	13.3029	0.0018	13.0761	0.0189	13.4137	0.0065	13.3690	0.0031
	February	13.5200	13.2597	0.0193	12.7639	0.0559	13.4296	0.0067	13.3590	0.0119
	March	13.6167	13.2183	0.0293	12.4204	0.0879	13.3719	0.0180	13.3626	0.0187
	April	13.5700	13.1787	0.0288	12.0218	0.1141	13.2625	0.0227	13.3761	0.0143
	May	13.9263	13.1407	0.0564	11.5362	0.1716	13.1144	0.0583	13.3802	0.0392
DS#6	June	14.0600	13.1042	0.0680	10.9784	0.2192	12.9783	0.0769	13.3871	0.0479
NGV	July	14.2033	13.0693	0.0798	10.4899	0.2614	12.8714	0.0938	13.3928	0.0571
	October	14.4930	13.0359	0.1005	10.2348	0.2938	12.7763	0.1185	13.3981	0.0755
	September	14.8550	13.0038	0.1246	10.2028	0.3132	12.6688	0.1472	13.4039	0.0977
	October	15.4633	12.9731	0.1610	10.2922	0.3344	12.5656	0.1874	13.4095	0.1328
	November	16.0209	12.9437	0.1921	10.4112	0.3501	12.4782	0.2211	13.4151	0.1627
	December	16.0900	12.9155	0.1973	10.5047	0.3471	12.4250	0.2278	13.4208	0.1659
	MM	RE	8.82	%	21.40	1%	9.87	%	6.89	%

From Table 8 found that the model of support vector machine was the most efficient for NGV, which had the rate of MMRE with the percentage of 6.89.

V. DISCUSSIONS

The purpose of this research was to compare the efficient algorithms for data mining techniques. The research used 3 techniques: 1) linear regression, 2) multi-layer perceptron, and 3) support vector machine. The data set was split into training data set and testing data set. The research calculates mean magnitude of relative error by using the historical data, which can provide the appropriate method for the forecasting. According to Panishussadon and Ketcham found that the forecasting of LPG by using neutral network. Average total sales are 10,000 baht that the error is equal to 600 units per day [10]. Lekkla and Thongkam investigated that forecasting of foreign exchange rate by using time series data mining techniques. They are also calculated mean absolute error and root mean square error, that the value is equal to 1.11 ± 2.10 and 1.13 ± 2.14 respectively by using linear regression, multi-layer perceptron, and sequential minimal optimization regression [11].

VI. RECOMMENDATIONS

Based on the findings of the research, here are the recommendations to be considered:

1. Other factors affecting oil and natural gas price for automobiles, such as inflation, should be considered in order to find the trending in price and rate of inflation. They can improve economics in long term.

2. Consideration other techniques such as artificial neutral network for the forecasting methods that are more suitable for data set.

CONCLUSION

This research investigated the algorithm that they are the most suitable for the forecasting. As the mentioned that the purpose of this research is to develop the model of forecasting retail oil and natural gas vehicles prices for automobiles in Thailand by using time series data mining techniques. As following conclusions can be drawn from the techniques which is the highest rate of MMRE and RMSE. The result of this study indicated the algorithms that researcher used as follows: 1) linear regression was the most suitable for gasohol E85 and ultra force diesel, which had the rate of MMRE with the percentage of 2.46, and 4.60. 2) support vectors machine for regression was the most suitable for gasohol 91, gasohol 95, gasohol E20 and NGV, which had the rate of MMRE with the percentage of 3.69, 3.20, 3.54, and 6.89, respectively.

REFERENCES

- Office of the National Economic and Social Development Council (NESDC), [Online], Source: http://www.eppo.go.th/ index.php/en/component/k2/item/14166-energy-statistics-256 1 [17 June 2019].
- [2] AR. Hoshmand, Business Forecasting. 2nd edition. New York: Routledge, 2009.
- [3] TT. Cai, and P. Hall, "Prediction in functional linear regression," Ann Stat., vol. 34, no.5, pp. 2159-79, 2006.
- [4] M. Kubat, "Neural Networks: A Comprehensive Foundation by Simon Haykin, Macmillan," Knowl Eng Rev., vol. 13, no. 4, pp. 409–12, 1999.
- [5] E, Frias-Martinez, A. Sanchez, and J. Velez, "Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition," Eng Appl Artif Intell, vol.19, no. 6, pp. 693–704, 2006.
- [6] SK. Shevade, SS. Keerthi, C. Bhattacharyya, and KRK. Murthy, " Improvements to the SMO algorithm for SVM regression," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1188–93, 2000.
- [7] PTT Oil and Retail Business Public Company Limited, [Online], Source: http://www.pttplc.com/th/ Media-Center/Oil-Price/pages/ Bangkok-Oil-Price.aspx?s=1 [18 June 2019].
- [8] SM. Weiss and N. Indurkhya, Predictive Data Mining: A Practical Guide. San Francisco: Morgan Kaufmann, 1998.S. Saigal, and D. Mehrotra, "Performance comparison of time series data using predictive data mining techniques," Adv Inf Min., vol. 4, no. 1, pp. 57–66, 2012.
- [9] W. Panishussadon, and M. Ketcham, "Demand forecasting for LPG station by Time Series and Artificial Neural Network," J Inf Sci Technol., vol. 7, no. 1 pp. 42–49, 2017.
- [10] S. Lekkla, and J. Thongkam, "Forecasting the Trend of Foreign Exchange Rates Using Time Series Analysis Techniques," Journal of

Innovative Technology Management Rajabhat Maha Sarakham University, vol. 5, no. 2, pp. 94–103, 2018.

.