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Abstract

This research presents a nonlinear free vibration analysis of
an advanced nanocomposite plate consisting of a functionally
graded matrix reinforced by graphene platelets (GPLs), which is
a novel technique to enhance the stiffness of plate structures.
The matrix phase’s constituent materials exhibit continuous
gradation according to the power law distribution across the
plate's thickness, and several GPL dispersion patterns are
investigated. The equations of motion are constructed based on
Hamilton's principle through the utilization of the four-unknown
refined plate theory (RPT4), the physical neutral surface theory,
and von Karman's geometric nonlinearity. The Bubnov-Galerkin
method and variational approach are then employed to
calculate closed-form solutions for the natural frequency.

Following that, various parametric studies are also conducted.

Keywords: Nonlinear Free Vibration, Functionally Graded Matrix,

Graphene Platelets, Refined Plate Theory
1. Introduction

Functionally graded materials (FGMs) have become a popular
research topic due to their superior performance compared to
conventional materials, effective prevention of interfacial
cracking, ability to fulfill multiple performance criteria, and
potential for innovative lightweight structures [1, 2]. Since their
introduction in 1984, there have been numerous studies on the
dynamic behavior of functionally graded (FG) plates, including
static and dynamic responses [3], nonlinear vibrations in thermal

environments using higher-order shear deformation theory and

von Karman’s nonlinearity [4-7], and experimental and numerical
investigations of geometrically nonlinear vibrations [8].
Advancements in nanotechnology have enabled the creation
of nanocomposites by integrating carbon nanomaterials like
graphene platelets (GPLs) into polymer, ceramic, and metal
matrices, resulting in exceptional mechanical, thermal, and
electrical properties [9-11]. GPLs, consisting of a 2D honeycomb
arrangement of carbon atoms, exhibit remarkable properties like
high elastic modulus, tensile strength, and large specific surface
area, surpassing even carbon nanotubes [12, 13]. Studies have
shown that adding GPLs significantly enhances the flexural
strength and fracture toughness of alumina [14] and silicon
carbide [15] ceramic composites, as well as the yield strength
and compressive strength of titanium composites for high-
temperature applications [16]. Investigations on nanocomposite
plates with functionally graded GPLs/polymer have observed a
notable increase in stiffness due to GPL reinforcement [17, 18].
The Increasing utilization of FG plates in engineering
structures is often subjected to vibrations. To model the plate
vibrations, many plate theories have been developed, including
classical plate theory, first-order shear deformation theory
requiring a shear correction factor, and higher-order shear
deformation theories to eliminate the need for a correction
factor. The four-unknown refined plate theory (RPT4) simplifies
the higher-order shear deformation theories while sharing
similarities with the classical plate theory’s governing equations.
The asymmetrical material property distribution in FG plates
can cause the physical neutral surface to deviate from the

geometric neutral surface, resulting in a stretching-bending
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coupling effect that can be mitigated by employing the physical
neutral surface concept [19-23].

This study aims to investigate the nonlinear free vibration
analysis of plate structures made of FG matrix reinforced by GPLs
based on the physical neutral surface concept and RPT4. The
governing equations that describe the motion of the plate model
are established using Hamilton's principle. To approximately
solve for the nonlinear vibration frequency, the authors employ
the Bubnov-Galerkin technique along with a variational approach.
These mathematical methods allow us to derive closed-form
expressions that capture the nonlinear vibration behavior.
Additionally, the study also explores the influence of various
parameters on the nonlinear frequency of a rectangular

nanocomposite plate.
2. Problem Formulation

2.1 Descriptions Of The Plate Model

The analysis focuses on a nanocomposite plate depicted in
Fig. 1. With a uniform thickness A across its entire area, the plate
model has dimensions of length @ and width b . The boundary
conditions are such that all four edges are simply supported,
allowing no movement in the normal direction but free
movement along the tangential direction. The nanocomposite
plate comprises three distinct materials: two constituent
materials of the matrix phase (a ceramic and a metal), as well as

the GPL nanofiller serving as the reinforcement of the plate.
2.2 Constitutive Modeling of Nanocomposite

The volume fractions ¥ of the matrix constituents (ceramic
and metal) varying continuously through the thickness of the
plate by a power law function, and Young’s modulus E,, and
mass density p,, of the FG matrix provided by the rule of

mixture are expressed as:

= 1Y h h
V‘(:)z(fi) ,16(:)=1—K(:),:€[—5,5]5 W
- l ¥
E_V(:)=(E1—E2)(i+§) +E,, N
- l U
o) = _ ‘.2 , (3)
pu() (pl pz)[h+2) +P

where the power law index N indicates the distribution pattern
of the volume fraction of these constituent materials, while the
subscripts "1" and "2" represent the constituents of the FG

matrix (ceramic and metal, respectively).
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Fig. 2 GPL dispersion patterns.

The volume fraction of GPL in each distribution pattern, as

depicted in Fig. 2, assumed to vary along the Z-axis smoothly, can

be introduced as:
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(l—cos(ﬂ)
h
Vv, |V, COS(%)
VaWs (W5 r:
4
Vorr (2) =VeWe A ¥We =<1_COS(E+Z)La @
VoWp |¥p
Tz
VEWE !//E I—COS(E—ZJ
1

where the maximum volume fractions of patterns A, B, C, D, and
E, denoted as V,,V3,V..,V,, and V; respectively, are
determined based on the total weight fraction of GPLs to ensure
that the total amount of GPLs remains constant across all

patterns as follows [24]:

W... k.
v = 6PL/0i , ©)
Weprks; + Poprky; (l ~Wep, )
w2 )
ky = _h‘,2Wi(2)dz’ ky = Py (z)dz,
o (6)
by =), P (2)wi(2)dz

where j = 4,B,C,D, and E represent the GPLs dispersion
patterns. Wgp; and pgp;  are the weight fraction and density of
the GPLs, respectively.

According to Halpin-Tsai model, the Young’s modulus of the

composite made of randomly oriented fillers is given by [2, 25]:

v
E(z)= 31+ & Ven E
8 1=1\Vop

my = (EGPI. /E.M)_l (EGPL /EM)_I
B (Egpr !/ Eae)+ &4 (Eer/ Ex)+én
En=2,11,,8,=2w,11t, ©)

51'*'522’722 GLp

(7)
8 L=1, Ve,

-~ ®

where [ ,"f, ¢> and d are the average length, width,
thickness, and diameter of the filler (GPLs), respectively. In this
work, the Poisson's ratio v of the nanocomposite will be
assumed to remain constant, and the mass density p of the

whole plate is given by the ROM as:

P(2)= PoscVerr (2)+ Vs (2)s (10)

where ¥, (2) =1-Vgz (2) is the volume fraction of the FG
matrix.
2.3 The refined plate theory and neutral surface position

As depicted in Fig. 1, the physical neutral surface is defined

at = = Z;, . With this reference plane, the displacement fields of

the FG nanocomposite according to the general form of RPT are

expressed as[26, 27]:

&
u(x,yat)_(z_zo)i_[f(z)_

ul (-V,y,Z,f) =

ow, (11
@ 2

O
U, (x,3,2,t)= v(x,y,t)—(z—zo)g_[f(z)_

uy (x,3,2,1) = w, (. 3,1) +w, (x, 3,1),

where u,,u,, and u;, respectively, stand for the displacements
in the X, ¥, and Z directions. The displacement components of
the plate in the x and Y directions are denoted byu andv. The
transverse displacement 4, consists of the bending component
W, and the shear component . In this work, the selected

shape function to describe the transverse shear deformation is
defined as f(z)=—z/4+52° /(3h2 ) . To take in account the

physical neutral surface, Z; and Z; are defined by [26, 28]:

" E(:)zdz ’ E(z)f(z)d:

Zo = ,z, = =HL . (12)
' “E( -)dz " E(z)d:

The strain field with considering the Von Karman’s nonlinearity

can be obtained as:

g | |& k; k;
& = Ef +(z-2)3k +[f(:)—:1] k; ¢
Vo) 7% k2, K, (13)
Ve Ve
=g(=)y .
{7)7} {y z }
in which
(ou 1 (aw ow, ]2
—+— +
0 ox 2 ox
gx
0 ov 6w 611’
6’y =1 + rs
. oy 2 Oy 6y
Ve ou ov (6“'1) ow, \( ow, ow,
—t— | 2+ —= || =+ —=
oy ox ox  ox oy oy
B azw,, ] ’_ o*w ]
X ox? K ox? (14)
x ~2 s x ~2 s
k;f _)_9 “21; y k; _J_@° uz 9
k? > kS >
e 3 ot v B 62wS
| &xdy | OxOy |
ow,
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The material behavior of the plate model can be described by

linear constitutive equations as follows:

1 v 0 0 0
(o, ] v I 0 0 0 |g
%1 p(z)[0 0 1"7‘” 0o o [|&
Oy >:1_V2 . Vol (15)
o'}z 0 0 0 T 0 )’},‘.
o'ﬁ; - \yﬁ,
: o0 o o V¥
2 )

2.4 Equations of motion

The equations of motion can be obtained using Hamilton's

principle as follows:

oN. ON,
SurE g T i,
ox oy

aN oN, o,
Svi—2 4L =[i-I, L1,
ox oy O.v

o, ow,
—t-1, .
ox ox

ows

vt EME @M
51%:61‘{’ +2 24

ox oxoy 6y
- ai;
_+_
oy

+N= I, (0, +0,)
(16)
]- LV, - J Vi,
oM M

x40 XJ‘+ y

20, , %0:
ey o ox oy
dii

+N = I, (30, +10, ) + I, gi & — J, Vi, = I, Vi,
ox oy

where
gl PY i N@ N@ N2 an
ol Fox o) ol Yoy ¥ ox

The inertia related terms are expressed as:

\
A
o

Ith( ) (%.

(18)
__:0)[f(:)_:l]
1 [/()-=T

The expression of stress resultants can be obtained as:

NN N

1 v 0 €
N t=Alv 1 0 g°
0

0
9t (19)

Xy

M| Ly oo |[B] (1 v o |[K
M; {=B|v 0 [k t+Clv 0 [k I,
b — b — s
Mn 00 l_v Lknf 00 I—V kxy

L 2 L 2 ]
Jf’ 1 v 0 “’f 1 v 0 kjﬁ
5 b s
L 1=Clv 0 ky +D|v 0 ky ,
N 1 b 1- s
2 oo =Xk o o =X |(A)
L 2 | L 2 ]
{Q AS {S}
0, 7
in which
w2 E(z w2 E(z)(z .0)2
=] B=] o
h21 V —h/2 -V
J-hz E(z)(z-z I:f _-1]
dz,
hi2 l V

(20)

p =J-h:'2 E(-)

2
g (z2)d:
“h22(1+v) (=)
Thus, the equations of motion based on nonlinear four-variable
plate theory can be expressed in terms of displacements

(,v,m,,w,) as follows:

ou 1-vé‘u l+v &%
Al —+ —+ -
ox 2 oy 2 Oxoy
Lo 1-vowdhw l+vow O'w 21)
x o 2 ex o 2 oy oxdy
o,
=1i—1, ——I
0 o 6x
v 1-vdy 1+v du
Al —+ — +
oy 2 ox 2 oxéy
» —_ y A y A%
+A @6_\;4_1 V@@_\; 1+v@ou 22)
oy oy 2 o0y ox 2 Ox oxoy
. o, oW,
=I(,v—11?)”—13 o
~DV'w, —EV*w, + N = I, (¥ +7,)
i oV (23)
+1, [iﬂ +‘f‘—] — LV, — J Vi,
ox oy
—EV*w, = FV*w, + A'Vw, + N = I, (3, +0,)
(24)

+1, @+@ — J, Vi, — J, Vi,
ox oy
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In the present work, I,,1;, and I, are neglected for their

relatively small contributions [29, 30].

3. Solution Procedure

The assumed forms of displacements (1, v,w,,; ) are as

2
l+v’g—2},
(04
ol .
il

follows[31]:
u(x,y,t)= %an (t)sin(2ax)[cos(2ﬁy) -

v(x,v,1)= 'B6W2 (t)sm(Z,B\){cos(Zax) l+v—

wy (x,3,1) =W, (t)sin(ax)sin(By).
w, (x,y,1) =W, (t)sin(ax)sin(Sy),
where W, =W, +W_ .a=mr/a, and f=nr/b. The

boundary conditions of the present plate model with all edges

simply supported are written as [26]:

ov o*w, o'w
x=0,a:u=—=w,=w, =—L=—2=0,
ox ox ox 26)
Py 2 2
ou o'w, oOw
v=0,b: \'=E=u‘b=w:= 0‘26= asz:O.

The expressions of the displacements in Eq. (25) evidently fulfill
all the boundary conditions presented in Eq. (26) as well as the
first two equations of motion, Eqs. (21) and (22). By substituting
Eq. (25) into Eqs. (23) and (24), we obtain, respectively:

{D(a2 £ ) Wy +E( 4 )T,

+[I0 +1, (o’ +,B2)]W,,m +[10 +1,(d’ +,32)]Wm

+§W,:" [20{2,62v+ar‘v2 +,B4v2] @n
o W3 1-v? [a sin® (By)+ B* sin’ (a\c)]}
-sm(ax)sm(,By) =0,

{E(oz2 LB, +[F(at2 +) A (@4 )] -

+[10 +1,(o +/32)]W,m +[10 +1(d +ﬁ2)]Wm

+§an [20° v +av? + g7 28)
+§W,:n (1-v? )[ar4 sin’ (Bv)+ ' sin’ (ax)]}
sin(ax)sin(By) =

By using the Bubnov-Galerkin method:
j:j:Asin(ax)sin(,By)dvdt =0, (29)

where /A denotes the left-hand sides of the Egs. (27) and (28).
Then, after performing the double integrations shown in Eq. (29),

the following ordinary differential equations can be obtained,

respectively:
kW, +k W, +k W +m W, +m W, =0, (30
koW, +k W, kW +m W, +m, W, =0, (31
in which
2
ky=D(a* +p* ) ky=E(a*+ ) .
_4 2 2 AT,

ks -R[4va Y4j +(3 v )(a +p )]

(32)

by =F(a?+B) + 4 (2 + B),

my =1 +1(a + B7), my =1, +1,(a*+5%),
my, =1, +1; (ot2 +,62).

By using the semi-inverse method [32], the variational principles

for Eqgs. (30) and (31) can be obtained as follows:

‘](W n,:mn) J.O l:k12W,I>mn :mn+ kn,bfnn

bmn >

bmn

+= k Wk +k ( Wy +W. W,
(33)

3 1

ot St

bmn"" smn

—my, W, W,

bmn"" smn

1 . 1
- E ’nllpme.n - 2 '”22 smn ]dt

The solutions to Eqs. (30) and (31) are obtained by finding
(1) and W, () that make the functional J (W, W7, )
reaches an extreme. The sinusoidal solutions for W, (f) and

W, (1) are approximately presumed as:

W, (1)=&, cos(at). W, (t)=¢& cos(at), (34)

where &, and & are the unknown coefficients, while @
represents the natural frequency of the free vibration of the
plate model. After substituting Eq. (34) into Eq. (33), one can
obtain:

klgb _s

J(&400)= 1 [ w41 2

3k
e (8 HAEE 658 A58+ &) 09

my, & mnff
—0*| my&, & + L )

The stationary conditions of the functional J (&4, , @) read:
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oJ

. 3 . 3 .
— =00k +hpd, +Zk13 (&+&) - o (myy +mypé,)=0. (36)
b

o7 3
o =0kab had + ks (644 ¥ -0 (mpé, +myé )=0. (37)

5
Llet&=¢, +& and A =&, =&, . The following equation can be

obtained after eliminating the variable 4 .

o' —(c +¢;) @ +(c, +¢5) =0, 38)
in which
C =My My, — m122,c2 = kymy, + kg, =2k, my,
3,
G = 1 138 (g +my —2myy ), (39)

3
¢y = kykyy — k122,c5 = Zkufz (kyy +kyy =2k

Finally, the nonlinear fundamental natural frequency of the

present plate model can be obtained as:

1 2 1/2
oy = ‘];{cz +e —|:(c2 +e;) —4c (e, +e ):| } (40)
1

When & approaches zero or becomes extremely small, the linear

fundamental frequency can be expressed as:

il:cz - (c§ —4cc, )m ]

2¢

W, = (a1)

4. Numerical results and discussions

In the absence of existing literature on FG nanocomposite
plates reinforced by GPLs, conventional FG plates will be utilized
for validation purposes, ensuring the accuracy of the solution
procedure and the obtained closed-form solutions. A square FG
microplate with simply supported boundary conditions is
employed to validate the study via the following parameters:
E, =14.4GPa,p, =12.2x10° kg / m’ , E, =1.44GPa,

P, =1.22x10°kg /m*, v=0.3,h=17.6x10"m,a/ h=10.

The dimensionless nonlinear natural frequency @ of the FG

microplate is defined as: @ = @y (a2 /h),’p2 /E,. InTable 1,

it can be observed that the obtained closed-form solution and
the results from the literature are identical for all cases in the
selected example.

The parametric study focuses on an FG plate reinforced by

GPLs, incorporating the following material properties:

AL O, (ceramic) :E, =380GPa, p, =3800kg / m’,
Al(metal ) :E, = 70GPa, p, =2702kg / m’,
GPL :E,, =1.01TPa, pyy; =1062.5kg [ m’,
top =1.5nm, Wep, = 1.5 um, lgp =2.5 pm.

(42)

The Poisson’s ratio is taken as ¥ =0.3. Otherwise stated, the

normalized nonlinear frequency of the FG plate is defined as

Dy = Oy (02 /h).’p1 / E, . The impact of the GPL weight
fraction, varying from 0 to 1.5%, on the relative change of the
nanocomposite plate's natural frequency are shown in Fig. 3.
The relative change of the natural frequency is defined as the
percentage change in frequency compared to the frequency of
the plate without GPL reinforcement. It can be observed that
increasing the amount of GPLs leads to an increased relative
frequency change in all cases. In addition, it is clear that the GPL
dispersion pattern D results in the highest natural frequency,
followed by pattern A. Conversely, the GPL dispersion pattern C
provides the lowest natural frequency. In detail, incorporating
GPL into the constituent material with lower stiffness and
concentration of the reinforcement closer to the plate’s top and
surfaces demonstrates effectiveness  in

bottom greater

increasing the natural frequency compared to those
concentrated near the mid-plane.

Fig. 4 investigates the impact of vibration amplitude on the
nonlinear frequency ratio @,; / @, of the plate model across
various GPL patterns. The parameters used in this analysis are
Wep, =1%,N =1, and mode (m,n)=(L1). The findings
indicate that as the vibration amplitude of the plate model
increases, the natural frequency ratio also increases. This
signifies a growing disparity between considering and neglecting
the nonlinearity in the system. It should be noted that, in
contrast to the findings regarding the nonlinear natural
frequency, the GPL patterns A and D exhibit the lowest
nonlinear frequency ratio across the entire range of vibration
amplitudes. This suggests that this particular combination is
more effective in minimizing the influence of nonlinearity on the

plate's frequency response.

Table 1 Comparison of nonlinear natural frequency @ of a simply

supported square FG microplate.

Elh
N Results
0 0.2 0.4 0.6 08 1
1 Ref [26] 52698 54126 58201 64423 72239 8119
Present 52698 54126 58201 6.4423 72239 8119
5 Ref. [26] 55351 56711 6.0609 66601 74181 82915
Present 55351 56711 6.0609 66601 74181 8.2915
10 Ref. [26] 6.1157 6.2388 65943 7.1476 78571 8.6845
Present 6.1157 62388 6.5943 7.1476 78571 8.6845
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Fig. 3 Influence of GPL weight fraction on the relative change of

1.25 1.5

natural frequency
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-a-Pattern C]

-w-Pattern D

©-Pattern E
'

1 1 1 1 1 L 1

L75 2

Fig. 4 Influence of vibration amplitude on the nonlinear frequency

ratio for various matrix gradations and GPL patterns.

wyy

20

a/h 30 3 b/a

Fig. 5 Influence of aspect ratio and length-to-thickness ratio on the

normalized natural frequency.

To demonstrate the impacts of the aspect ratio b/ a and

length-to-thickness ratio a/h of the plate model on the

normalized natural frequency @y = @y hp [ E;, the
nanocomposite plate with the GPL pattern D is employed. The
chosen parameters for the plate model are as follow:
Wep, =1%,N =1,&/h=1, and mode (m,n)=(1,1). Fig. 5
shows that as the length-to-thickness ratioa / h and aspect ratio

b/ aincrease, the natural frequency of the plate decreases.
5. Conclusions

The nonlinear free vibration analysis of the nanocomposite
plate consisting of FG matrix reinforced by GPLs was conducted.
The study examined five different GPL distribution patterns
(patterns A, B, C, D, and E). The equations of motion of the plate
were developed and solved utilizing the RPT, von Karman’s
nonlinearity, Hamilton's principle, the Bubnov-Galerkin method,
and a variational approach. The main conclusions from the
results can be described as follows: (1) the addition and pattern
of GPL distribution significantly affect the nonlinear natural
frequency of the nanocomposite plate; (2) GPL dispersion pattern
D results in the highest natural frequency, while the dispersion
pattern C provides the lowest natural frequency; (3) increasing
the GPL weight fraction leads to an increased relative frequency
change in all cases; (4) the impact of vibration amplitude shows
that as the vibration amplitude of the plate model increases, the
natural frequency ratio @,; / @, also increases; (5) with
increasing aspect ratio b/ a and length-to-thickness ratio a/h ,

the natural frequency of the nanocomposite plate decreases.
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