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Abstract—Detecting abandoned bags in public areas is 
essential for ensuring safety and preventing potential threats. 
This research presents a novel approach for abandoned bag 
detection using Grounding DINO, a state-of-the-art vision-
language model, combined with fine-grained semantic prompts. 
The method integrates object detection and contextual analysis 
to identify stationary bags left unattended for specified 
durations, distinguishing them from routine activities in 
dynamic settings such as airports, train stations, and shopping 
malls. The proposed approach is evaluated on the ABODA 
dataset, achieving an abandoned bag detection recall of 90.91%. 
Grounding DINO's capability to process textual prompts 
ensures precise bag identification, while its adaptability 
supports diverse public environments. The workflow involves 
detecting bags using fine-grained prompts, tracking their 
movement across frames through centroid distances between 
the owner’s and bag’s bounding boxes, and applying temporal 
and frame-based criteria to confirm abandonment. To enhance 
reliability, the system incorporates proximity-based owner 
identification by detecting nearby individuals and analyzing 
their interactions. Context-aware thresholds adjust detection 
parameters, ensuring robustness in crowded or complex 
environments. Furthermore, the results are compared to 
previous works to evaluate differences in performance and 
capabilities. 
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I. INTRODUCTION 
The detection of abandoned objects (AOD) in public 

spaces is a pivotal aspect of ensuring public safety and 
preventing potential threats such as terrorism, theft, and 
accidents. As public spaces become increasingly crowded, the 
reliance on automated video surveillance systems has grown, 
with the primary goal of minimizing human intervention while 
maintaining high accuracy in detecting suspicious activities. 
In Figure 1, the sequence illustrates a typical scenario for 
abandoned object detection (AOD). The detection process 
involves identifying specific behaviors in the video feed, such 
as a person carrying an object (①), placing it at a certain 
distance (②), walking away from the object (③), and leaving 
the object stationary and unattended (④). Automated systems 
rely on advanced algorithms to analyze such patterns by 
tracking the motion of individuals and their belongings, 
assessing temporal and spatial relationships between objects 
and people. This enables the system to distinguish between 
scenarios where an item is intentionally abandoned and 
situations such as temporary placement. For instance, Fig. 1 
demonstrates the importance of trajectory analysis in 
recognizing that the person has moved away from the bag. 
Combined with object detection models, these systems  

 
Fig. 1. Sequence depicting a person carrying a bag, placing it at a distance, 
walking away, and leaving the bag abandoned. 

classify the bag as "abandoned" when it remains static without 
any associated individual. This automated process is crucial 
for reducing false alarms in crowded environments, ensuring 
that security personnel can focus on genuine threats. 
 The need for intelligent systems capable of distinguishing 
between benign and potentially hazardous situations has 
driven research in the field of computer vision and deep 
learning [1-3]. Early methods of AOD primarily relied on 
background subtraction techniques, which involved 
identifying static objects by analyzing changes in the scene 
over time. While effective in controlled environments, these 
methods often encountered limitations in real-world 
applications due to issues such as occlusion, sudden 
illumination changes, and dynamic backgrounds [4,5]. For 
instance, objects blending with the background or stationary 
individuals could trigger false alarms, reducing the overall 
efficiency of these systems. To mitigate these issues, adaptive 
dual-background models have been introduced, offering 
improved robustness by dynamically adjusting to scene 
changes. Additionally, techniques such as pixel-based finite-
state machines (PFSM) have enhanced the ability to detect 
static objects [6]. The advent of deep learning has  
revolutionized AOD by enabling the development of 
sophisticated models that leverage convolutional neural 
networks (CNNs) to improve accuracy and robustness. Single-
stage detection models, such as the YOLO series, and two-
stage models, like Faster R-CNN, have demonstrated  
significant potential in object detection tasks, including AOD. 
These models excel in processing large datasets, extracting 
intricate features, and adapting to various environmental 
conditions [4,7,8]. For example, hybrid approaches 
integrating YOLO with contextual analysis and temporal 
consistency modeling have achieved higher accuracy rates in 
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detecting abandoned objects in complex scenarios [1,6].
 Another significant advancement in AOD research is the 
incorporation of ownership identification. Studies have 
focused on associating abandoned objects with their owners 
by analyzing gait patterns, spatial proximity, and behavioral 
cues. Techniques such as kernel canonical correlation analysis 
and gait energy image generation have been employed to 
identify and track individuals in surveillance footage, thereby 
enhancing the system's ability to determine ownership and 
potential intent [5,7,9]. Datasets such as PETS 2006, AVSS 
2007, and ABODA [1] have played a crucial role in evaluating 
the performance of AOD systems. These datasets present 
diverse and challenging scenarios, including crowded 
environments, occlusions, and varying lighting conditions, 
making them invaluable for benchmarking and fine-tuning 
AOD frameworks [5,7]. Additionally, newly developed 
datasets have introduced complex cases, such as partially 
visible objects and group dynamics, to test the robustness of 
proposed systems [5,6]. Despite these advancements, 
challenges persist in detecting small or occluded objects, 
minimizing false positives, and achieving real-time 
performance. For instance, small objects often lack distinctive 
features, making them difficult to detect, particularly in low-
resolution videos. To address these gaps, recent studies have 
proposed integrating advanced feature extraction methods, 
such as multi-scale fusion, with deep learning models tailored 
for small object detection [6,10].    
 This paper aims to contribute to the field by proposing an 
integrated AOD framework that combines real-time object 
tracking and deep feature analysis with Grounding DINO and 
fine-grained prompts. By leveraging state-of-the-art 
methodologies, the framework seeks to enhance detection 
accuracy, minimize false positives, and ensure scalability for 
real-world applications. The inclusion of Grounding DINO 
empowers the system to detect both expected and unforeseen 
objects, regardless of size, further bridging the gap between 
current limitations and the requirements of real-world 
scenarios. The proposed approach not only addresses 
technical challenges but also aims to improve public safety in 
diverse environments. The paper is organized into four 
sections to provide a comprehensive understanding of the 
study. Section I introduces the topic, highlighting the 
significance of abandoned object detection (AOD) and the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proposed framework. Section II details the methodology, 
including Grounding DINO. Section III presents experimental 
results and analysis, while Section IV concludes with findings 
and future directions. 

II. METHODOLOGY 
The proposed methodology for detecting abandoned bags 

in video footage is outlined in the workflow below, as shown 
in Fig. 2. The approach integrates object detection, temporal 
frame sampling, and spatial association of detected objects 
using the Grounding DINO model. The system ensures robust 
detection of abandoned bags by tracking their association with 
individuals over time and checking for specific criteria based 
on distance and frame count. Below are the main steps 
involved in the process: 

A. Input Videos and Frame Sampling 
To efficiently process video data for abandoned bag 

detection, a frame sampling method was employed to reduce 
computational load while maintaining temporal information. 
The input video used in this research is derived from the 
ABODA footage dataset, which provides a diverse range of 
scenarios for abandoned bag detection. The total number of 
frames (𝑁𝑁) and the frame rate (frames per second, FPS) were 
extracted using the OpenCV library, and these values were 
used to calculate a frame sampling interval (𝑆𝑆). The sampling 
interval was determined using the formula: 

        𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑁𝑁
𝑇𝑇
� , 1�         (1) 

where 𝑇𝑇 represents the target number of frames to be 
processed (e.g., 500). This approach ensures that the sampled 
frames are evenly distributed across the video timeline while 
maintaining sufficient coverage of its temporal domain. 
Frames were then sampled at indices: 

                         𝐹𝐹𝑖𝑖 = 𝑖𝑖 ⋅ 𝑆𝑆, 𝑖𝑖 = 0,1,2, … ,𝑇𝑇 − 1                       (2) 

and the selected frames were saved as images for further 
processing. By leveraging this method, the system balances 
accuracy and computational efficiency, enabling robust 
detection without the need to process every frame in the video. 
This systematic reduction of frames ensures that the workflow 
remains computationally feasible while preserving 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig. 2. Proposed workflow for Abandoned Object Detection using Frame Sampling (e.g., hop distance = 20). The process involves sampling frames from input 
videos, applying Grounding DINO to detect and annotate objects (e.g., person and bag), associating objects across frames through a looping mechanism, and 
evaluating abandoned bag criteria based on the centroid distance (CDist > 170) and the number of frames (FCounter > 5). The system distinguishes between an 
abandoned bag and an attended bag based on these parameters. 
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critical temporal details necessary for object detection and 
association.  

B. Object Detection with Grounding DINO 
The object detection phase leverages the Grounding DINO 

model, a state-of-the-art vision-language model designed to  
detect and label objects based on textual prompts. This model 
was configured to recognize specific objects such as "person" 
and "bag" using the defined text prompt 𝑃𝑃 ("person, bag"). 
Each sampled frame, extracted during the frame sampling  
process, is processed by the Grounding DINO model to 
identify objects of interest. The model predicts bounding box 
coordinates (𝐵𝐵), object confidence scores (𝐶𝐶), and 
corresponding labels (𝐿𝐿) for each detected object based on the 
input image (𝐼𝐼) and prompt. This detection process can be 
mathematically expressed as: 

(𝐵𝐵, 𝐿𝐿,𝐶𝐶) =
              predict(𝐼𝐼,𝑃𝑃, box_threshold, text_threshold)         (3) 

where 𝐵𝐵 represents the predicted bounding boxes defined by 
center coordinates (𝑚𝑚𝑐𝑐,𝑦𝑦𝑐𝑐), width (𝑤𝑤), and height (ℎ); 𝐶𝐶 denotes 
the confidence scores for each detected object; and 𝐿𝐿 
corresponds to the object labels such as "person" or "bag." 
Detection thresholds for bounding box confidence and text 
relevance, defined as box_threshold and text_threshold, are 
used to filter out low-confidence predictions. In this research, 
we use box_threshold and text_threshold were set to 0.35 and 
0.35, respectively. For each detected object, bounding box 
coordinates are transformed into pixel dimensions to 
accurately locate objects within the frame. This 
transformation ensures that the bounding box fits within the 
image boundaries. The bounding box parameters, including 
minimum (xmin, ymin) and maximum (xmax, ymax) pixel 
coordinates, are calculated as follows: 
 

            𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 = max �0, �(𝑚𝑚𝐶𝐶 −
𝑤𝑤
2

).𝑊𝑊��                    (4) 

           𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚 = max �0, �(𝑦𝑦𝐶𝐶 −
ℎ
2
).𝐻𝐻��                     (5) 

           𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min �𝑊𝑊, �(𝑚𝑚𝐶𝐶 + 𝑤𝑤
2

).𝑊𝑊��                  (6) 

           𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = min �𝐻𝐻, �(𝑦𝑦𝐶𝐶 + ℎ
2
).𝐻𝐻��                     (7) 

 

where 𝑊𝑊 and 𝐻𝐻 represent the width and height of the image, 
respectively. These calculations ensure the bounding boxes 
remain within the image bounds and accurately capture the 
detected objects.      
 To facilitate further analysis, the detected objects are 
annotated directly onto the frames using their bounding boxes 
and labels. Each annotated frame is saved for documentation, 
while the bounding box coordinates and associated labels are 
recorded in text files. Additionally, cropped regions 
corresponding to the bounding boxes are extracted and stored 
separately. This step allows the isolated analysis of specific 
objects, such as bags, in subsequent stages of the workflow. 
The object detection phase efficiently processes all sampled 
frames. In cases where no objects are detected, the system logs 
the absence of bounding boxes to maintain transparency in the 
detection process. This integration of the Grounding DINO 
model ensures robust detection and labeling of objects, 
forming the foundation for subsequent analysis of object 
relationships and behaviors. By combining vision-language 
capabilities with precise bounding box calculations, this 

methodology achieves high reliability in detecting and 
annotating objects, such as persons and bags, critical for 
abandoned bag detection. 

C. Loop Finding for Object Association 
The process of loop finding for object association is 

critical to reliably linking detected persons with their 
corresponding bags in consecutive video frames. This step 
ensures that objects are tracked consistently over time, 
minimizing the chances of false associations or missed 
detections. The primary goal is to associate each detected 
"person" bounding box with the closest "bag" bounding box 
within the same frame, using spatial proximity as the guiding 
criterion. To achieve this, the system calculates the centroids 
of bounding boxes, evaluates the Euclidean distances between 
centroids, and assigns unique identifiers to maintain consistent 
tracking of individuals and their associated objects. To 
determine the central point of a bounding box, the centroid is 
calculated as the average of the top-left and bottom-right 
coordinates of the box. For a given bounding box b = (𝑚𝑚1,𝑦𝑦1, 
𝑚𝑚2,𝑦𝑦2), the centroid coordinates (cx, cy) are computed using the 
formula: 

  𝑐𝑐𝑚𝑚 = 𝑚𝑚1+𝑚𝑚2
2

, 𝑐𝑐𝑦𝑦 = 𝑦𝑦1+𝑦𝑦2
2

                            (8) 

This centroid serves as the reference point for evaluating 
the spatial proximity between objects. The Euclidean distance 
between two centroids, such as those of a person and a bag, is 
calculated to quantify their spatial closeness. For two 
centroids (cx1, cy1) and (cx2, cy2), the distance 𝑑𝑑 is determined 
by: 

         𝑑𝑑 = �(𝑐𝑐𝑚𝑚2 − 𝑐𝑐𝑚𝑚1)2 + (𝑐𝑐𝑦𝑦2 − 𝑐𝑐𝑦𝑦1)2                (9) 

The bag with the smallest distance is assigned to the 
person, provided it has not already been associated with 
another individual in the same frame. This process is repeated 
for all detected persons, ensuring that every person is paired 
with the closest bag when possible. Unique identifiers are 
assigned to each person and their associated bag to enable 
consistent tracking across frames. To maintain temporal 
consistency in object tracking, a loop-checking mechanism is 
introduced. This mechanism monitors the associations 
between objects across consecutive frames. If a person and a 
bag remain unassociated for a predefined number of frames, 
the system flags the bag as "abandoned." This is achieved by 
maintaining a separation frame counter for each person-bag 
pair. When the separation counter exceeds a threshold 𝑇𝑇𝑠𝑠, the 
bag is marked as abandoned: 

SeparationFrames(𝑝𝑝, 𝑏𝑏) > 𝑇𝑇𝑆𝑆 ⟹ AbandonedBag (10) 

where 𝑝𝑝 and 𝑏𝑏 represent the person and bag bounding boxes, 
respectively. This mechanism ensures that objects are not 
prematurely flagged as abandoned due to temporary 
occlusions or brief separations. In addition to tracking, the 
system provides a visual representation of the detected 
associations by annotating each frame. Persons and bags are 
highlighted with bounding boxes, and lines are drawn to 
indicate associations. Labels are added to specify whether a 
bag is "attended" or "abandoned," enhancing the 
interpretability of the detection results. This approach 
effectively captures the dynamic interactions between 
individuals and their belongings, ensuring robust and accurate 
detection of abandoned bags. By leveraging spatial and 
temporal relationships, the system reduces false detections  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and enhances the reliability of real-time surveillance 
applications. 

D. Abandoned Bag Criteria Check 
The abandoned bag detection workflow processes each 

frame iteratively, applying the above criteria to all detected 
person-bag pairs. For instance, the abandonment criteria are 
defined as 𝑇𝑇𝑠𝑠 > 5 frames and 𝐶𝐶dist > 170 pixels, where 𝑇𝑇𝑠𝑠   
represents the separation threshold in frames and 𝐶𝐶dist  is the 
calculated distance between the person and the bag. If a pair 
meets these conditions for abandonment, the system generates 
alerts and saves annotated frames for review. This systematic 
approach ensures high accuracy in identifying abandoned  
bags by combining spatial and temporal analysis. By  
integrating distance thresholds, temporal tracking, and 
comprehensive annotations, this methodology achieves 
reliable abandoned bag detection in dynamic environments. 
The use of both spatial and temporal parameters minimizes 
false positives and enhances the overall robustness of the 
detection system. 

III. RESULTS AND DISCUSSION 
The testing results of the proposed workflow for 

abandoned bag detection are analyzed. First, the performance 
of Grounding DINO is verified using the PETA [13] dataset 
to evaluate its ability to detect "person" and "bag" based on 
the prompts. Next, the workflow is tested using ABODA 
videos and, finally, compared with other research works. 

A. Verification of Grounding DINO on the PETA Dataset 
The PEdesTrian Attribute (PETA) dataset is a widely used 

benchmark for recognizing pedestrian attributes, including 
gender, clothing style, and carried objects, from images 
captured at significant distances. This dataset is particularly 
valuable in video surveillance scenarios where close-up shots 
of faces and bodies are often unavailable. It comprises 19,000 

pedestrian images annotated with 65 attributes, which include 
61 binary and 4 multi-class labels, and represents 8,705 unique 
individuals. For this study, a subset of the dataset was selected, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

specifically the MIT, GRID, i-LID, and CAVIAR4REID 
subsets, to align with the research objectives. The PETA 
dataset provides images along with corresponding attribute  
labels, enabling precise analysis of specific features. In this 
research, the primary focus is on detecting persons and their 
attributes related to carrying bags. The dataset includes 11 
carrying labels that are relevant to the "bag" category. These 
labels are: carrying BabyBuggy, carrying Backpack, carrying 
Other, carrying ShoppingTro, carrying Umbrella, carrying 
Folder, carrying LuggageCase, carrying MessengerBag, 
carrying Nothing, carrying PlasticBags, and carrying Suitcase. 
These labels cover a wide range of scenarios involving  
individuals carrying various types of bags and objects, 
ensuring the generalizability of the detection framework. The 
results of detecting attributes in the PETA dataset are 
summarized in Tables I and II. Table I highlights the detection 
performance for identifying persons, while Table II focuses on 
detecting the "bag" attribute across 11 carrying categories. 
These findings demonstrate the model's ability to accurately 
detect individuals and their associated carrying attributes, 
showcasing its potential for surveillance applications.  
 Figure 3 highlights five common carrying labels, 
showcasing diverse individual-bag scenarios within the 
dataset. Grounding DINO, using the "person" prompt on the 
PETA dataset, delivered exceptional results: 100% accuracy, 
recall, precision, and F1-score on the MIT subset; 98.43% 
accuracy and 99.21% F1-score on GRID; and near-perfect F1-
scores on i-LID (99.79%) and CAVIAR4REID (99.96%), 
demonstrating high reliability in person detection. In contrast, 
Table II reveals challenges with the "bag" prompt. On the MIT 
subset, performance dropped to 65.00% accuracy, 61.00% 
recall, 55.00% precision, and 58.00% F1-score. The GRID 
subset performed worse, with 50.20% accuracy, 38.22% 
recall, 64.18% precision, and an F1-score of 47.91%, 
indicating inconsistency in bag detection. 

 
 Fig. 3. (a) Examples from the PETA dataset showcasing various carrying attributes. (b) Detected results using the 'person' prompt. (c) Detected results using 
the 'handbags' prompt, highlighting specific carrying categories. 
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The i-LID subset had an accuracy of 57.44%, recall of 
59.21%, precision of 55.10%, and F1-score of 57.08%. Lastly, 
the CAVIAR4REID subset exhibited the lowest performance, 
with an accuracy of 56.67%, recall of 55.24%, precision of 
20.90%, and F1-score of 30.33%. This poor performance in 
Table II highlights the difficulties in detecting "bag" due to 
several factors. First, some images are captured at significant 
distances from the camera, causing both the person and the 
bag to appear small in the frame, making detection harder. 
Additionally, certain ground truth annotations, such as 
"carryingOther," visually  resemble bags, while others, like 
"carryingPlasticbags," are not actual bags, leading to 
misclassifications. 

B. Tesing the Proposed Workflow on ABODA Videos 
The proposed workflow for abandoned bag detection was 
evaluated using the ABODA dataset, which contains videos 
demonstrating various scenarios of individuals interacting 
with bags. The sequential detection process, as illustrated in  
Fig. 4, captures key stages in the abandonment workflow: (a) 
carrying the bag, (b) placing the bag, (c) walking away, and 
(d) identifying the bag as abandoned. This visual progression 
was tested across several videos (Videos 1, 3, and 9) to ensure 
robustness in detecting abandoned bags under diverse 
environmental conditions. Table III provides a detailed 
performance comparison between the ground truth and the 
proposed method. For each video, the ground truth represents 
the actual number of abandoned bag instances, while the 
performance of the proposed workflow is measured in terms 
of true positives (TP) and false positives (FP). The results 
reveal that the workflow accurately identified abandoned bags 
in most test videos, achieving a high true positive rate.
 However, in Videos 5 and 6, the method encountered 
challenges, with some missed detections attributed to the  
specific environmental conditions. The main reason for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

missed detections in these videos was the use of night vision 
under low-light conditions, which caused the bags to appear 
either as glare or to blend in with the surrounding 
environment. This visual similarity between the bag and the 
background made it difficult for the workflow to accurately 
identify the object as an abandoned bag. Such challenges 
highlight the increased likelihood of false negatives in low- 
light conditions, where the model incorrectly predicts the 
absence of a bag. Additionally, the detection process is 
evaluated using key metrics: 

1) True Positive (TP): The model correctly predicted the 
presence of a bag (e.g., a bag was correctly detected as a bag). 

 
                    (a)                       (b)                            (c)                   (d) 

Fig. 4 Sequential detection of abandoned bags: (a) Carrying the bag, (b) 
Placing the bag, (c) Walking away, and (d) Bag identified as abandoned. 
Shown for Videos 1, 3, and 9. 

TABLE III.  PERFORMANCE COMPARISON OF ABANDONED OBJECT DETECTION FOR ABODA DATASET WITH STATE-OF-THE-ART METHODS 

ABODA 
Dataset Ground Truth Proposed  Newlin et al. [7] Park et al. [11] Lin et al. [1] Dwivedi et al. 

[12] 
TP FP TP FP TP FP TP FP TP FP 

video1 1 1 0 1 0 1 0 1 0 1 0 
video2 1 1 0 1 0 1 0 1 0 1 0 
video3 1 1 0 1 0 1 0 1 0 1 0 
video4 1 1 0 1 0 1 0 1 0 1 0 
video5 1 1 1 1 0 1 0 1 1 1 1 
video6 2 1 1 2 1 2 0 2 0 1 3 
video7 1 1 0 1 0 1 0 1 1 0 4 
video8 1 1 0 1 0 1 0 1 1 0 3 
video9 1 1 0 1 0 1 0 1 0 1 0 
video10 1 1 0 1 0 1 0 1 0 1 0 

 

TABLE I.  PERFORMANCE OF GROUNDING DINO WHEN USING DETECTED PROMPTS "PERSON" ON PETA DATASET 

Dataset Subset Tested 
Images Prompts TP FP TN FN Accuracy Recall Precision F1-

score 
PETA 
[13] 

MIT 888 'person' 888 0 0 0 100% 100% 100% 100% 
GRID 1275 'person' 1255 0 0 20 98.43% 98.43% 100% 99.21% 
i-LID 477 'person' 475 0 0 2 99.58% 100% 99.58% 99.79% 

CAVIAR4REID 1230 'person' 1229 0 0 1 99.92% 100% 99.92% 99.96% 
 

TABLE II.  PERFORMANCE OF GROUNDING DINO WHEN USING DETECTED PROMPTS "BAG" ON PETA DATASET 

Dataset Subset Tested 
Images Prompts TP FP TN FN Accuracy Recall Precision F1-

score 
PETA 
[13] 

MIT 888 'bag' 213 174 364 137 65.00% 61.00% 55.00% 58.00% 
GRID 1275 'bag' 292 163 348 472 50.20% 38.22% 64.18% 47.91% 
i-LID 477 'bag' 135 110 139 93 57.44% 59.21% 55.10% 57.08% 

CAVIAR4REID 1230 'bag' 116 439 581 94 56.67% 55.24% 20.90% 30.33% 
 



 

 

 

 

 

2) False Positive (FP): The model incorrectly predicted 
a bag where there was none (e.g., something that is not a bag 
was identified as a bag). 
Despite these challenges, the workflow performed effectively 
in well-lit scenarios, as evidenced by the high accuracy and 
low false-positive rates in most videos. These findings suggest 
that improving the detection algorithm to better handle low-
light environments, such as by integrating advanced 
preprocessing techniques for glare reduction or low-light 
enhancement, could further enhance its robustness and 
reliability. Future work should focus on refining the model to 
minimize false negatives and false positives, ensuring 
consistent performance across diverse lighting conditions and 
environmental challenges. 

C. Comparison with Other Research Works 
The proposed workflow for abandoned bag detection was 

compared with several state-of-the-art methods, including 
those by Newlin et al., Park et al., Lin et al., and Dwivedi et 
al., using the ABODA dataset. The comparison highlights the 
strengths and limitations of the proposed approach relative to 
existing methodologies, focusing on its performance across 
different scenarios captured in the dataset. As shown in Table 
III, the proposed method demonstrated strong performance, 
correctly identifying abandoned bags in most videos with 
minimal false positives. However, some challenges were 
observed in Videos 5 and 6, where false positives occurred. 
These errors were primarily due to low-light conditions and 
night vision challenges, where the bags either appeared as 
glare or blended into the background, making detection more 
difficult. Despite these challenges, the proposed method 
performed competitively, achieving a balance between true 
positives and false positives. In Table IV, the performance 
metrics—precision, recall, and F1-score—are derived based 
on true positives (TP) and false positives (FP) only, as the 
dataset focuses solely on abandoned bag detection. Since there 
is no explicit consideration of true negatives (TN) and false 
negatives (FN) in this evaluation, the metrics are calculated as 
follows:  

1) Precision is calculated as 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 , 
representing the proportion of correctly detected bags among 
all detected instances. 

2) Recall is calculated as Recall = 𝑇𝑇𝑇𝑇
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺 𝑇𝑇𝐺𝐺𝐺𝐺𝑇𝑇ℎ 𝐼𝐼𝑚𝑚𝐼𝐼𝑇𝑇𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼

 , 
representing the proportion of correctly detected bags relative 
to the total number of actual abandoned bags in the dataset.
 3) F1-score is the harmonic mean of precision and recall, 
given by 𝐹𝐹1 − 𝑠𝑠𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃 = 2 ∙ Precision∙Recall

Precision+Recall
 

The proposed workflow achieved a precision of 83.33%, 
recall of 90.91%, and an F1-score of 86.96%, providing 
competitive performance despite slightly trailing top methods. 
Park et al.’s approach excelled with perfect metrics, while 
Newlin et al.'s method maintained high recall and F1-scores 
but lower precision. Lin et al. and Dwivedi et al. showed 
limitations with higher false-positive rates. Enhancements, 

such as advanced low-light image processing and refined 
feature extraction, could improve precision and reduce errors, 
ensuring consistent, accurate abandoned bag detection across 
diverse and challenging conditions. 

IV. CONCLUSION 
The proposed methodology integrates object detection, 

temporal frame sampling, and spatial association using the 
Grounding DINO model for abandoned bag detection in video 
footage. It leverages the PETA dataset for verification and the 
ABODA dataset for real-world testing. Frame sampling and 
bounding box transformations ensure computational 
efficiency without compromising accuracy, while centroid 
calculations and temporal tracking enhance reliability in 
person-bag pair detection. PETA results demonstrated 
robustness in detecting "persons" but revealed challenges with 
"bags" due to object size and annotation ambiguity. ABODA 
testing showed high detection rates in well-lit scenarios but 
limitations in low-light conditions, where glare and blending 
caused errors. The workflow achieved a competitive F1-score 
of 86.96%. Future improvements include addressing low-light 
challenges with advanced enhancement techniques to ensure 
consistent, reliable detection in diverse environments for real-
time security applications. 
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TABLE IV.  PERFORMANCE METRICS WITH GROUND TRUTH 

Methods Precision Recall F1-Score 
Proposed 83.33% 90.91% 86.96% 
Newlin [7] 91.67% 100% 95.65% 
Park [11] 100% 100% 100% 
Lin [1] 75.00% 81.82% 78.26% 
Dwivedi [12] 47.62% 90.91% 62.50% 
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