Research Article: | On The Fractional Domain Analysis of HP TiO2 Memristor Based Circuits with Fractional Conformable Derivative |
Author: | Rawid Banchuin |
Email: | rawid.ban@siam.edu |
Department/Faculty | Graduate Schools of IT, Siam University, Bangkok 10160 |
Published: | Cogent Engineering, Volume 8, Issue 1, 1986198, DOI: 10.1080/23311916.2021.1986198 |
Citation
Banchuin, R. (2021). On the fractional domain analysis of HP TiO2 memristor based circuits with fractional conformable derivative. Cogent Engineering, 8(1), 1986198, DOI: 10.1080/23311916.2021.1986198
ABSTRACT
For the first time, the physical memristor-based circuits i.e., HP TiO2 memristor-based circuits, of both series and parallel structures, have been extensively analyzed in the fractional domain by means of the state of the art yet simple fractional conformable derivative-based differential equations. Different outcome from the hypotheticalmemory element-based previous researches have been obtained. The dimensional consistencies of the fractional derivatives have also been concerned. The often-cited Joglekar’s window function has been adopted for modelling the boundary effect of the memristor and adding more nonlinearity close to the bounds of the memristor’s state variable. The formulated fractional differential equations have been solved and the related electrical quantities have been determined. The computational simulations have been performed. The stability analyses of both circuits have also been presented where it has been mathematically verified that only these HP TiO2 memristor-based circuits are stable always due to the boundary effect which does not exist in hypothetical elements assumed in those previous works. We also point out that that only those HP TiO2 memristor-based circuits of order higher than 3 are capable to exhibit the complex dynamics as such memristor lacks the local activity.
Keywords: Fractional conformable derivative, fractional differential equation, fractional domainHP TiO2 memristor, nonlinear circuit.
On The Fractional Domain Analysis of HP TiO2 Memristor Based Circuits with Fractional Conformable Derivative
Graduate Schools, Siam University, Bangkok, Thailand
Related:
- The FDE Based Time Domain Analysis of Nonzero Input/Nonzero Damping Ratio Fractional Order Biquadratic System
- The Stochastic Analysis of OTA-C Filter
- Time Dimensional Consistency Aware Analysis of Voltage Mode and Current Mode Active Fractional Circuits
- An Extensive Tensor Algebraic Model of Transformer
- On the Dimensional Consistency Aware Fractional Domain Generalization of Simplest Chaotic Circuits
- Analysis of memreactance with fractional kinetics
- The time dimensional measurability aware FDE based analysis of active circuit in the fractional domain
- Effects of parasitic fractional elements to the dynamics of memristor
- On The Fractional domain Generalization of Memristive Parametric Oscillators
- An SDE based Stochastic Analysis of Transformer